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Abstract of the Dissertation
Measurement of Charged Pions from

Neutrino-produced Nuclear Resonance
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Clifford Simon
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University of California, Irvine, 2014

Prof. David Casper, Chair

A method for identifying stopped pions in a high-resolution scintillator bar

detector is presented. I apply my technique to measure the axial mass M∆
A

for production of the ∆(1232) resonance by neutrino, with the result M∆
A =

1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from

the measured spectrum of reconstructed momentum-transfer Q2. I proceed

by varying the value of M∆
A in a Rein-Sehgal-based Monte Carlo to produce

the best agreement, using shape only (not normalization). The consistency of

this result with recent reanalyses of previous bubble-chamber experiments is

discussed.
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Chapter 1 Introduction

The positive charged pion (π+) and its antiparticle (π−) are active on nuclei.

(The last pion, the π0, travels only cτ ≈ 25 nm in matter or vacuum before de-

caying electromagnetically, a length too short to react observably on matter.)

This property originally facilitated the discovery of the pion by the observation

of its capture upon a nucleus [1].

If the pion is a product of a scattering process to be measured, then

pion reactivity can complicate the measurement in some types of detectors.

Scintillator-bar detectors, dependent on ionization tracks left by charged par-

ticles at low angles, are easily confused by pion reinteractions in dense detector

matter. The effect is also hard to simulate. Cross-sections of πA scattering

have been measured [2] but it is not clear that detector Monte Carlos are

interpolating the measurement correctly. It is analogous to the well-known

problem in neutrino flux simulations of hadronic reinteraction in thick targets.

I present a method to identify stopped pion tracks in a high-resolution

scintillator detector. This is based on detecting pion-like energy loss near the

endpoint of a track. The non-stopping background can then be subtracted out

of the sample. By using a pure stopping sample for a measurement, a clean

track sample is achieved (but at a cost in statistics of the measurement). The

classification of pion tracks as stopping or not stopping by energy loss near

the endpoint, is a method that appears not to have been tried in scintillator

detectors previously.

I apply my technique to measure the resonant axial massM∆
A . The plan of

1



this thesis is, first, to review the theory of resonance production and establish

the M∆
A problem. I review the results of previous experiments measuring the

resonant axial mass through the shape of a distribution of momentum trans-

fer Q2. Afterward, I introduce the present detector and the data set I am

working with. There I describe how I reconstruct events and how I subtract

reinteracted-pion background. The distinctive result of this measurement tech-

nique is a very precise reconstruction of the hadronic mass W of the event.

Finally I present my best measurement of the Q2 shape. The axial mass will

be extracted by varyingM∆
A in the Monte Carlo to produce the best agreement

in shape.

The second chapter describes the minerva detector. I include here descrip-

tions of the strip-to-strip calibration procedure, and the detector alignment.

These came from my original service work in the minerva Collaboration and

I leave them here as a reference for any parts that may have escaped docu-

mentation elsewhere.

1.1 Theory of Resonance Production

The distribution of matter within a hadron is represented by its form factors.

With the arrival of high intensity νA (neutrino-nucleus) scattering, it becomes

more possible to see axial-vector form factors, as these form factors are inac-

cessible to other types of scatterers. One hadron of interest is the ∆(1232)

nuclear resonance. This resonance is an isospin I = 3/2 multiplet, coming

in four varieties of charges (∆−, ∆0, ∆+, ∆++): each variety decays to πN ,

where the nucleon N stands for either proton or neutron. This lightest reso-
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nance provides an interesting probe of baryon physics. In addition, as resonant

pions are a background to neutrino oscillation experiments, there is heightened

interest in the resonance cross-section for neutrinos.

This theory section will outline the origin and meaning of each form factor

for ∆-production by lepton scattering. A large number of Lorentz-allowed

form factors will be reduced to only two significant and independent form

factors. The derivation, to be sketched here, parallels the easier but better-

known derivation of the Rosenbluth formula for electron-proton scattering.

Compared to ep scattering, ∆-production substitutes a spin-3/2 fermion for

the proton on the final side; additionally, it uses the weak rather than the

electromagnetic interaction. Both differences greatly inflate the initial number

of terms.

The derivation begins with the most general matrix element (M.E.) allowed

by Lorentz invariance: this introduces a number of form factors not necessarily

independent from one another. Regrettably, the most general M.E. is long

enough that one searches for a way to abbreviate. On a single line, utilizing the

accepted symbols for its eight Lorentz-allowed form factors, the entire M.E. is

spelled out in Eq. (3.58) of reference [3]—the interested reader is encouraged

CV
3 (0) = 2.13

CV
4 (0) = −1.51

CV
5 (0) = 0.48

MV = 0.84 GeV

Table 1.1: Vector form factors from electron scattering, neglecting modifica-
tions to the dipole form. Values are taken from Eq. (IV.20) of reference [11].

3



to look there for the complete details. For our purpose, we will adopt an

expedient method (from [9]) and write explicitly just the hadronic current,

since the other parts (the leptonic current) are familiar, and not enlightening

to write in full detail.

We will approach the general M.E. in the following manner. For lepton-

nucleon scattering in the channel ℓN → ℓ′∆, we may begin with the matrix

element in this form,

M(p, p′, k, k′) = out〈ℓ′(k′)∆(p′) | ℓ(k)N(p)〉in

=
G√
2

(
ψ̄ℓ′γ

µ(1− γ5)ψℓ

)
〈∆|Vµ − Aµ|N〉

and work on the hadronic side one term at a time. The vector part of the

hadronic current is given in [9] as

〈∆(p′)|Vµ|N(p)〉 = f(W )

{
Ψ̄µ(p

′)aλq
λ − Ψ̄λ(p

′)qλaµ + Ψ̄µ(p
′)CV

6 (q
2)
}
γ5ψ(p)

where q = p− p′, aλ is shorthand for

aλ =
CV

3 (q
2)

mN

γλ +
CV

4 (q
2)

mN
2
p′λ +

CV
5 (q

2)

mN
2
pλ,

f(W ) is a Berit-Wigner function for the width of the resonance (with W =

√
p′µp

′µ standing for the resonance mass), Ψµ is the Rarita-Schwinger spinor

for the resonance, and ψ is the Dirac spinor for the nucleon.

This step has established four vector form factors CV
3 . . . C

V
6 . Notice that

we have not used the lepton flavor. This is significant for measuring the

4



vector form factors: in the case of all isospin I = 3/2 resonances, the ∆(1232)

resonance included, the CV
i form factors measured by ν N and e−N scattering

are identically the same (see reference [11]).

Next, the number of independent form factors deflates because of consid-

erations beyond just plain Lorentz invariance. To achieve simplification we

must consider all other kinds of constraints, both exact and approximate. Ac-

cording to the conserved vector current (referred to as CVC) imposed by the

Lagrangian, CV
6 is forced to be exactly zero. According to the quark model,

the N → ∆ transition is magnetic dipole. In the approximation of magnetic

dipole dominance, CV
5 ≈ 0 and CV

4 ≈ −(mN/W )CV
3 (these approximate con-

straints are derived for the γ N → ∆ case in [4]). The literature takes CV
3

as the independent form factor. (Since each of the three nonzero form fac-

tors CV
3 . . . C

V
5 can be extracted from electron scattering, some papers like [11]

treat them as all independent.)

When the leptonic scatterer is electron, the interaction is only vector and

only the vector form factors contribute. As stated previously, the electron and

neutrino form factors are identical, meaning the vector form factors measured

in electron experiments may be substituted directly into the neutrino M.E.

The following approximation is interesting: at very small momentum transfers

|q2| / 0.35 GeV2, the vector contribution σV to the neutrino cross-section is

directly proportional to an electromagnetic cross-section, as

(
d2σ

dQ2 dW

)V

=
G2

π

3

8

Q4

πα2

(
d2σ

dQ2 dW

)em

(see [9, Fig. 5]). In this approximation, vector/axial-vector interference is

5



neglected. To get from the approximate to the rigorous result, reference [11]

describes the complete extraction of each CV
i from electromagnetic scattering,

with results summarized in Table 1.1. (Magnetic dipole dominance constrains

CV
3 and CV

4 to have approximately the same mass parameter. In the formalism

of Ref. [11], each form factor’s exact mass parameter, if different than 0.84

GeV, is accounted for in modifications from exact dipole form.)

Finally, we repeat this procedure for the axial-vector part of the hadronic

current. Starting again with every term allowed by Lorentz invariance, the

axial-vector current takes the form

〈∆(p′)|Aµ|N(p)〉 = f(W )
{
Ψ̄µ(p

′)bλq
λ − Ψ̄λ(p

′)qλbµ

+ Ψ̄µ(p
′)CA

5 (q
2) + Ψ̄λq

λqµ
CA

6 (q
2)

m2
N

}
ψ(p)

where bλ is shorthand for

bλ =
CA

3 (q
2)

mN

γλ +
CA

4 (q
2)

m2
N

p′λ.

Now this establishes four more axial-vectors form factors CA
3 . . . C

A
6 . Again

we pare down the number of independent form factors. One constraint arises

from partially conserved axial current (PCAC), the property of the free quark

Lagrangian being symmetric under the group of axial-vector rotations, except

for its mass terms. The PCAC constraint is CA
6 = −m2

NC
A
5 /(q

2−m2
π), derived

(for example) in [11, §A.1]. A unique feature of this constraint is that is also

allows us to evaluate the form factor numerically for one value of q2. The limit

q2 → 0 can be taken, with the result that CA
5 (0) = 1.2. This dimensionless

6



value is a combination of experimentally known constants (the pion decay

constant, and a transition amplitude for ∆ → π N), as explained fully in the

reference.

Recalling how the vector form factors were reduced, we were next able

to utilize magnetic dipole transition dominance to derive more (approximate)

constraints. This does not yield any axial-vector constraints: we must fall

back to more general considerations if more axial-vector constraints are to

be discovered. Happily, causality provides two more constraints. The inter-

ested reader can go to reference [5] for a general discussion of causality in πN

reactions.

In very brief summary, causality implies a disperson relation, including

as a special case the Optical Theorem relating the total cross-section to the

imaginary part of the scattering amplitude at θ = 0. The general dispersion

relation cannot be solved exactly. From approximate solutions to dispersion

theory, it is found that CA
3 ≈ 0 and CA

4 ≈ −CA
5 /4: these form factor relations

seem to have been introduced by S. L. Adler [6], and were followed in all later

references ([9, 10, 11]). The literature takes CA
5 as the independent form factor.

One may now ask what function of q2 each form factor is. Since q is

spacelike, q2 ≤ 0 and we define q2 = −Q2 in order to use the nonnegative

expression Q2 in our formulas. Now, in the approximation that the ∆ is a

point particle, the form factors would be exact dipoles, as below:

CV
3 (Q

2) = CV
3 (0) (1 +Q2/M2

V )
−2

CA
5 (Q

2) = CA
5 (0) (1 +Q2/M2

A)
−2





point approximation

since the dipole is related to the Fourier transform of the delta function δ3(~x).
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Figure 1.1: Dominance of CV
3 and CA

5 . The cross-section is evaluated using
Fermi’s golden rule, with MA = 1.05 GeV and neutrino energy Eν = 1 GeV,
shown on a coarse scale (a) and a fine scale (b). Plots from [10].

The two scale factors, and the numbers MV (vector mass) and MA (axial

mass) are undetermined parameters. Theoretical models propose a variety of

other functional forms, all approximately dipole, to account for the ∆’s spatial

extension; even in the spatially-extended case, however, MV and MA are still

considered the first-order parameters along with the overall scales.

At last, Fermi’s golden rule converts the M.E. squared into a differential

cross-section dσ/dQ2. This program is carried out completely in each of the

references [9, 10, 11]; the reader is encouraged to refer to these self-contained

papers for details. The result of matrix element squaring is presented visually

in Fig. 1.1. The notable result is that CV
3 and CA

5 (and their interference

term) contribute an order of magnitude more compared to the other terms

and cross-terms.
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1.2 Spectra of Momentum Transfer Q2 from

Previous Experiments

Since the vector form factors are known according to Table 1.1, and CA
5 (0) =

1.2 is established by PCAC, the neutrino experiment’s immediate task is dis-

covering the axial massMA in CA
5 . In principle, this is accomplished by fitting

the measured differential cross-section dσ/dQ2, whereMA is the free parameter

of the fit.

A limited number of Q2 spectra have been measured for neutrino reso-

nance production. This measurement has been performed with a variety of

detector technologies from 1978 to the present. Bubble chamber experiments

have employed a magnetic field, whereas subsequent experiments have used

non-magnetized technology. The strategy of event reconstruction changes con-

siderably when the aid of magnetic field is removed.

In each of these experiments the measured differential cross-section dσ/dQ2

is an average over a wide spectrum of neutrino energy Eν , except the Mini-

BooNE experiment, which separates its dσ/dQ2 into bands of Eν .

Bubble Chamber

Cross-sections have been measured by bubble chambers at fnal [12], cern

[13], Argonne [14], and Brookhaven [15]. The figures below show each experi-

ment’s result.

Event reconstruction in each of the bubble chamber experiments is per-

formed by fitting of the event to several hypotheses, each hypothesis being an

exclusive reaction channel. The Argonne experiment, for example, considers

9



Figure 1.2: fnal bubble chamber dσ/dQ2. From 138 events passing the fit
to ν p → µ− p π+, taken in the fnal hydrogen bubble chamber. The cut
M(π+ p) < 1.4 GeV is applied. The spectrum of Eν turns on at 5 GeV, is
flat from 10 to 30 GeV and falls off until 100 GeV. Original figure from [12].

fits to νD → µ− p π+ ns, νD → µ− p π0 ps and νD → µ− nπ+ ps (where D is

the target deuteron and ns or ps is the spectator nucleon). The hypothesis

with the greatest χ2 probability is taken, but if the probability does not exceed

some small lower bound, typically 1%, the fit is bad and the event is rejected.

These magnetized experiments were insensitive to pion reinteractions so

long as the reinteraction occurred sufficiently far from the vertex. Only a

primary segment of sufficient length is necessary when momentum is measured

with the help of the magnetic field.

Scintillator Bar Detector

This type of detector is constructed of planes of scintillating bars, with air

space or additional material between planes. The planes are normal to the

beam direction; the more finely spaced the planes and bars, the higher the

10



Figure 1.3: cern bubble chamber dσ/dQ2. From 551 events on hydrogen.
The cut M(π+ p) < 1.4 GeV is applied. Neutrino energy Eν ranges from 5
to 200 GeV. Original figure from [13].

Figure 1.4: Argonne bubble
chamber dσ/dQ2. From 871
events on deuterium, fit as
νD → µ− p π+ ns. Original figure
from [14].

Figure 1.5: Brookhaven bubble
chamber dN/dQ2. From 1384
events on deuterium. The Eν

spectrum peaks at 1.2 GeV.
Original figure from [15].
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detector resolution.

The non-magnetized SciBooNE experiment [16] uses a scintillator bar de-

tector (the SciBar detector) with rectangular strips. The strip cross-sectional

dimensions are 1.3 cm × 2.5 cm. The experiment has produced a dN/dQ2

spectrum for ∆ resonance production by neutrino (Fig. 1.6), but not as a

stand-alone result however. It was incidental to their analysis for coherent

pion production (and this means the resonant events in this case are actually

the background). For both resonant and coherent pion production, this exper-

iment improves pion identification in scintillator detectors by use of the energy

loss on the pion track.

In SciBooNE’s pion scenario, the muon is identified by penetration into a

muon range detector (M.R.D.). The recoiling nucleon is not energetic enough

to penetrate many bars, so its presence is tagged by extra activity seen near the

vertex. The second track is therefore expected to be the pion. The experiment

tags pions through the “muon confidence level,” MuCL, which measures how

similar the hits are to the expected hit from a minimum-ionizing particle (mip),

which is calibrated to muons. A charged pion is somewhat close to minimum-

ionizing, but a proton is not at all (Fig. 1.6, left).1 So the MuCL acts as a

p/π separator. The pion candidate is allowed to exit the SciBar detector, as

the MuCL score does not place special emphasis on the track endpoint.

Coherent events (the signal) are separated from resonant events (the back-

ground) by the absense of energy at the vertex. Resonant event vertex energy

should be consistent with a recoiling nucleon. The recoiling proton of a res-

onance event is typically not energetic enough to leave a track in the SciBar

1This I.D. is insensitive to pion reinteraction in the scintillator, since to first approxima-
tion, if the pion does not stop, it looses its Bragg rise and looks only more mip-like.
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Figure 1.6: SciBooNE particle I.D. and dN/dQ2. From [16].

detector.

Although the pion is I.D.’d effectively, no attempt is made to measure its

energy. This measurement was not needed because the SciBooNE analysis

computes the coherent momentum transfer Q2 without using the pion four-

vector as input. Resonant events can be reconstructed in a variety of ways,

even from the muon alone if the resonance mass is assumed, but they cannot

be reconstructed correctly by the C.C.Q.E. hypothesis2. This is no mistake,

though, since SciBooNE has (obviously) no need to produce the real kinematics

for its background.

Čerenkov Radiation Detector

The MiniBooNE experiment [17] is the current leader of the pack in neutrino-

produced resonance cross-section. This non-magnetized experiment does not

have an external muon I.D., therefore, both the pion and the muon are identi-

fied by the combination of a non-showering Čerenkov cone plus a time-delayed

2The SciBooNE coherent reference [16] uses Monte Carlo to argue that the momen-
tum transfer Q2 produced by a charged-current quasi-elastic (C.C.Q.E.) hypothesis is close
enough for coherent. This argument appears to succeed despite that coherent events are
nothing like C.C.Q.E. physically.

13



0

50

100

150

200

250

300

350

400

450

True Kinetic Energy (MeV)
50 100 150 200 250 300 350 400 450K

in
et

ic
 E

n
er

g
y 

M
is

re
co

n
st

ru
ct

io
n

 (
fi

t-
tr

u
e)

/t
ru

e

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Figure 1.7: MiniBooNE error in Tπ. From [17].

Michel electron. The event is fit to the hypothesis of ν N → µ− π+N ′.

Čerenkov cones from muon and charged pion are indistinguishable. Confu-

sion of the pion and the muon would ruin the estimation of momentum transfer

Q2, by causing the appearance that most of the momentum is transfered to the

hadrons. So as not to error in this way, MiniBooNE requires the π+ to scatter

once in the mineral oil, and produce a secondary cone. This scatter serves as

the pion I.D. tag. (The event is then composed of three non-showering cones:

muon, primary pion, and rescattered pion. The N ′ is invisible.) This method

of reconstruction is no longer insensitive to pion reinteraction. Quite the other

way, a specific topology of reinteraction is necessary.

Pion energy measurement with reinteractions is a challenge to non-mag-

netized experiments, and MiniBooNE’s case typifies this universal quest. In

MiniBooNE’s case, the reconstructed energy is centered on the true kinetic

energy up to 150 MeV, but wider and not centered for higher true kinetic

energy; the center of reconstruction comes out 20% too low for higher energy
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Figure 1.8: MiniBooNE dσ/dQ2, flux-averaged. From [17].

pions (Fig. 1.7). The muon energy reconstruction, which is more important,3

is narrow and centered. Misreconstruction effects are unfolded out of the data

for the final result. The differential cross-section in bins of Eν from 48,322

events is reproduced in Fig. 1.8 and Fig. 1.9.

1.3 Conclusions about M∆
A from Momentum

Transfer Spectra

From the differential cross-sections from existing experiments, a value of the

resonant axial mass M∆
A close to 1 GeV is indicated. This value can be visu-

alized as in the neighborhood of the mass of a proton. But this estimate is a

rough one. It is difficult to find a single, precise value of M∆
A that satisfies all

3The error from Tπ is typically diminished when propagated into Eν , W , or Q2, since
Tπ enters into W or Q2 only through Eν = Eπ + TN + Eµ. Typical events have Tπ ≪ Eµ,
so the Eν error is mostly explained by the muon.
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Figure 1.9: MiniBooNE dσ/dQ2. From [17].

the experiments.

O. Lalakulich and E. A. Pascos, in reference [10], using modifications to the

dipole shape as suggested by resonant e−N scattering, M∆
A . These authors

find that the Brookhaven cross-section is closely predicted by M∆
A = 1.05

GeV. Argonne, on the other hand, is predicted by M∆
A = 0.84 GeV if the

same modified dipole is used. The experiments at higher neutrino energy—

fnal and cern—are less sensitive to the axial mass, and appear to fit well

with either value. These conclusions typify the problems with extracting the

resonant axial mass with existing data.

We conclude that current experimental data gives the resonant axial mass

M∆
A ≈ 1 GeV. The MiniBooNE cross-section, a current topic of discussion at

the time of this writing, is well-situated to improve the situation. My intention

using minerva data is to develop a pion reconstruction that is complimentary
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to MiniBooNE’s (focused on unreacted rather than reacted pions), and sensi-

tive to as few as possible of the systematics associated with reinteraction. My

plan in the subsequent chapters will explain this further.

1.4 Experiments Measuring the Total

Resonance Cross-Section

The differential cross-section dσ/dQ2 is a difficult measurement. More data

points are available from measurements of the total resonance cross section

σ∆(E) as a function of the neutrino energy E in the lab frame.

The total cross section σ∆(E) can also be used to measure the axial mass

M∆
A through its functional dependence on E. In this scenario, however, states

Reference [8], “the numerical value of MRES
A [= M∆

A ] is vastly dependent of

the particular dynamic model for the resonance production.”

Ref. [8] has reviewed all the available bubble-chamber data for σ∆(E).

Results from ANL, BNL, fnal, cern and ihep are included. A simultaneous

fit has been performed to all the data using a model derived from Rein and

Sehgal [7]. The result of this procedure is that under the assumptions of the

modified Rein-Sehgal model, M∆
A = 1.12± 0.03 GeV.
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Chapter 2

Beam and Detector Description

The minerva detector [18, 19] is a non-magnetized scintillator bar detector.

This chapter will outline the detector’s main features as they are used in this

thesis. For a complete detector description the reader is encouraged to rely on

reference [19]. The detector is running in the numi beamline’s Near Detector

Hall at Fermi National Accelerator Laboratory.

The low energy (L.E.) configuration of the numi beam has been used to pro-

duce the events in this thesis. The minerva experiment’s L.E. run lasted from

22 March, 2010 until 30 April, 2012. During this run, 2.99× 1020 protons-on-

target (P.O.T.) worth of beam exposure was delivered to the detector during

its analysis livetime. After the L.E. run, the minerva experiment will continue

running in other beam configurations.

2.1 Layout of the Beam, including Flux

Estimation

The high-intensity neutrino beam is a marvel of modern engineering. The

reader is encouraged to see Chapter 2 of Reference [18] for a complete and very

accessible description of Fermilab’s numi beam, from the proton accelerator

to the target, focusing, decay, and in situ monitoring. I will give a briefer

description of numi here. For a review of neutrino beams in general, reference
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Figure 2.1: minerva module. Scintillator strips are seen in the black light-
tight bag, center. The visible strips run in the slanted V direction (see Fig.
2.4 for the explanation of strip direction designations X/U/V.) The O.D.
scintillators, optical cables and lead-plate absorbers of the ECAL are lacking.
Photo from Fermilab Visual Media Services, Negative No. 07-0113-01D.
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[21] is definitive.

To produce the neutrino beam, accelerated protons are aimed at a graphite

cylinder target. Protons with energy E = 120 GeV in the lab frame react with

carbon nuclei in the target. Pions and kaons are produced. These products

exit the target cylinder transversely, and possibly reinteract on their way out.

Charged pions and kaons exiting the target are collected by the magnetic

field of the horn system. The horns are devices meant to select singly charged

particles (q = +e) at a fixed momentum p, and deflect all others. The numi

horn system consists of two horns. Each horn has a double-parabolic conductor

shape.

Horns work in analogy to geometric optics. The “focal length” f of a

double-parabolic horn is given as

f =
1

e

π

µ0aI
p (2.A)

where e is the fundamental charge, a is a parameter describing the horn’s con-

ductor shape as z = ar2, I is the current setting up the horn’s magnetic field,

and p is the focused momentum [21, Eq. (12)]. Once the target-horn distance

f has been determined, I can be adjusted to select the focused momentum p.

The second horn of numi is situated at f = 10 m from the focal point,

and its a parameters are given by a = 0.1351 cm−1 on the upstream side

(a = 0.2723 cm−1 cm on the downstream side) [22]. When a double horn has

different parabolas, the a referenced in Eq. (2.A) is effectively the mean of the

two a’s, so a = 0.2 cm−1 = 20 m−1 should be applied. The horn current is 185

kA for the L.E. configuration of the beam. Applying Eq. (2.A), the focused
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momentum is found to be 4.4 GeV/c.

The first horn’s focusing properties are not as easy to estimate as the sec-

ond. The second horn of a two-horn system is usually for refocusing particles

that for any reason escaped being focused by the first horn. In the L.E. con-

figuration of numi, the target and the focal point are both inside the first

horn. The geometric optics approximation (Eq. (2.A)) cannot apply to the

first horn, since the target and horn are overlapping. The focusing properties

of the first horn need to be assessed using Monte Carlo (§4.1).

Focused pions and kaons head toward the evacuated decay pipe. These

experience two-body leptonic decays, π+ → µ+ νµ (and K+ → µ+ νµ). Any

neutrinos that decay in the forward direction head toward the experiment hall.

The charged particles (decay muons, and undecayed mesons) are stopped by

a beam absorber.

The absolute flux is difficult to predict. “The prediction of the neutrino

flux starting from the yield of secondary hadrons from a target is the bane of

every neutrino experiment,” states Reference [21]. The analysis I present is

area-normalized, meaning it does not care about the absolute flux. The shape

of the flux (only) will be important.

The estimate of the neutrino flux presented to minerva comes from a

combination of methods. First, hadron production in the numi target can be

estimated with hadron production experiments using similar thick targets. The

flux shape used in this thesis is tuned to hadroproduction data from Fermilab

experiment E118 [28] and cern experiment NA49 [29]. Further constraints

on the flux come from in situ monitoring. A flux shape prediction by in situ

methods is shown in Fig. 2.2.
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The key shape features of minerva’s flux in the L.E. beam are its peak

near Eν = 3 GeV, steep decline until 5 GeV and long tail. At the analysis

stage, I reject events with reconstructed Eν > 10 GeV so most of the tail is

not seen.

One final aspect of the beam is its timing. Protons are delivered to the

beam target in spills lasting 10 µs. The absolute number of protons on target

(P.O.T.) is measured once each spill. The number varies with time, as upgrades

to the beam allow it to increase in intensity, but a typical value is 35 × 1012.

The spill rate is 2 Hz, resulting (from the detector data acquisition point-of-

view) in a very short pulse of activity, followed by a long time available for

Figure 2.2: Flux in the numi Near Detector Hall. Figure from [23]. This
figure shows a flux shape constrained by in situ muon monitors with different
thresholds. The solid curve with errors uses estimated hadron production
from monitor measurements (the hatched area is a region of extrapolation).
The dashed curve is a separate Monte Carlo. The muon-antineutrino (ν̄µ)
and electron-neutrino (νe, ν̄e) fluxes are not shown.
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data transfer, at each spill of the beam.

2.2 Layout of the Detector

Longitudinally, the minerva detector is arranged as veto, targets, tracker,

electromagnetic calorimeter (ECAL) and hadronic calorimeter (HCAL). The

tracker layer, which is situated in the middle of the sandwich, is primarily com-

posed of hydrocarbon scintillator and is the neutrino target for this analysis.

Neutrino-produced pions must also stop within the tracker for this analysis,

to allow their ionization to be fully measured in the tracker. The layout of

minerva is shown in Fig. 2.3.

The minos Near Detector, a magnetized detector, serves as muon detector

for the minerva experiment. The minos N.D. is located behind the rear face

of minerva’s hadronic calorimeter after a gap. (This arrangement of the muon

detector is the cause of the 1.5 GeV threshold for muon energy.)

The minos N.D. itself is another scintillator-bar detector, with 152 scin-

tillator planes and a toroidal magnetic field of average strength 1.3 T. The

scintillator planes of minos are separated from one another by steel absorbers.

The detailed layout of minos planes and absorbers is not critical for under-

standing this analysis, since the detector is only being used to measure the

momentum of muons which have exited minerva (Fig. 2.5). Either the cur-

vature of the muon in the magnetic field, or the range of the muon if stopped

by the steel absorbers, can be used to measure the muon momentum. Details

of the muon reconstruction can be found in §5.2.

This analysis uses mainly the tracker layer of minerva. The fiducial vol-
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Figure 2.3: minerva detector, top view. Beam is left to right. The minos

Near Detector (functioning as our muon detector), not shown, is after the
HCAL. Diagram from [20].

Element Atoms Protons Neutrons
×1023 ×1023 ×1023

per cm2 per cm2 per cm2

H 0.903 0.903 . . . . . . . . .
C 0.889 5.334 5.344
O 0.024 0.192 0.192
Cl 0.00189 0.0321 0.0349
Ti 0.00176 0.0387 0.0456
Si 0.00129 0.0118 0.0182
Al 0.00111 0.0144 0.0288

Sum 6.526 5.664

Table 2.1: Plane composition (Tracker). In the 85 cm fiducial apothem,
each plane contributes 1.633 × 1028 target protons and 1.418 × 1028 target
neutrons, for a total of 3.234 × 1030 target nucleons in 106 tracker planes.
Column 2 is reproduced from reference [18, Table 3.1]. Column 4 uses isotope
fractions from [41].
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ume for my analysis contains 3.2 × 1030 target nucleons in the tracker planes

(see Table 2.1 with caption). The pion must both start and stop in this layer.

For charted particles, each plane presents a thickness at θDet = 0 of 2.02 g/cm2

for energy loss. Of that thickness, 1.65 g/cm2 is scintillator, and the remaining

is passive material such as light-sealing bags.

Layers outside the tracker will play only a brief role in my analysis. The

total hadronic energy in minerva including all layers will be relied upon to

reject events with an extra pion. Extra π0’s, for instance, can be expected to

light up the ECAL. Each other layer is different from the tracker by containing

additional material. The targets layer, which is situated between veto and

tracker, holds extra material at different mass numbers A, for experiments

seeking the cross section A-dependence. ECAL has absorbers of lead, and

HCAL has wider spacing of scintillator with absorbers of steel.

The beam is almost normal to the face of minerva (it is actually aimed 3.34

degrees downwards). Transverse to the beam, minerva appears as concentric

hexagons. As one travels outward from the center, one sees a scintillator core,

a middle ring of ECAL and an outer shell of HCAL. Scintillator extends up

to 90 cm apothem. The ring of ECAL begins at 90 cm, and the ring of HCAL

begins at 1 m. The outer shell of HCAL, also called the outer detector (O.D.),

is also a supporting steel frame. The fiducial apothem is 85 cm, to allow some

spacing between the event vertex and the edge of the lead in the ECAL.

Parallel scintillator strips make up the core of each plane (photo, Fig.

2.1). The plane has 127 triangular strips. When viewed from the front, the

numbering of strips goes from right to left because positive x points to the left

in beam’s-eye view (y up, z into page) to preserve right-handedness. The 64th
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Figure 2.4: minerva plane, beam’s-eye view. Arrows show the direction
of increasing strip number for an X-plane, a U-plane and a V-plane. Strip
numbers in the O.D. increase radially. Diagram from [20].

strip, the longest in the set, is always a diameter of the bounding hexagon.

In order to reconstruct tracks in three dimensions—the z-dimension and

two transverse dimensions—planes are installed with alternating strip direc-

tions. With the bounding hexagon left invariant, the scintillator core can be

rotated in 60◦ increments to produce three orientations or “views,” named X,

U and V (Fig. 2.4). As the orientation changes, the track transverse position

is seen in different bases. X planes with vertical strips see in the x-direction

while U and V planes see directions slanted at ±60◦.

One important consequence of the layout is the minimum number of con-

secutive planes required to define a track. This number depends on the exact

sequence and ordering of views. The tracker planes are installed with a fixed

pattern of views. As one travels in the beam direction, no two views are con-

secutive but every even-numbered view is X, while the odd-numbered views

alternate U and V. Nearest U’s (for example) are separated by three inter-

vening planes, an XVX sequence. According to this pattern, the minimum

track length can be deduced. If fewer than five consecutive planes, a line is
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Figure 2.5: The minerva and minos detectors, in linear perspective. A
muon track exiting the back of minerva (green) projects into a muon track
entering and exiting the minos near detector (blue). This muon’s energy can
be found by its curvature in minos. (Diagram produced by the arachne

Display [40].)

not defined. Tracks of exactly five planes define a line always and colinearity

sometimes—this is the result of a somewhat boring exercise of listing every

5-plane sequence. (Some 5-plane sequences have 3 of one view, but some do

not.) If six planes or more consecutively, three X’s are guaranteed and the

colinearity test is always possible. In summary, a particle has to go about 6

planes, maybe 5 in extreme cases, before it can be a line. The threshold for

hadron tracking is found here and turns out to be ≈ 60 MeV for pions.

Different coordinate systems are defined for the detector and for the beam,

and care must be taken to distinguish them. What does a polar angle θ

mean? In the detector system, θDet is the angle for calculating the length of

material L sec θDet presented to an ionizing track. In the beam system, on

the other hand, θ is the angle for resolving a collision into its transverse and

longitudinal momentum components, pT = p sin θ and pz = p cos θ. Unless

otherwise noted, position coordinates will be given in the detector system, but

momentum vectors will be given in the beam system. Subscripts may be used
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where confusion might arise.

2.3 Detector Optical and Electronic System

Each minerva scintillator strip has an optical fiber running down its center.

The fiber is mirrored on the bottom (negative y) end. At the top (positive y)

end, the fiber is routed by a series of optical connectors to one channel of a

64-channel photomultiplier tube (P.M.T.). Each tube is powered and read out

by its electronics board. With sixty-four strips serviced by each P.M.T., each

row of twenty P.M.T.’s and boards is configured to service eight consecutive

planes. Sixteen P.M.T.’s cover the 127 core scintillator strips per plane. The

four additional P.M.T.’s service the 30 more O.D. scintillators per plane in the

group of eight.

The electronics boards record detector activity during a synchronized 16 µs

gate. The gate is timed to begin approximately 1 µs before the beam spill

arrives. By extending past the end of the 10 µs spill time, the gate also

captures delayed activity, including Michel decay electrons originating from

stopped pions.

During the gate, when a discriminator fires, time and charge information

for that discriminator’s channels are pushed onto a volatile memory stack.

(Charge for each channel is measured at three different gains to improve the

dynamic range of the charge measurement.) If the same discriminator fires

again during the gate, the channel data is pushed again onto the stack, which

is able to go several levels deep before there is loss of information. This ar-

rangement allows a limited amount of event pile-up. After the gate, the board
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waits in a “full” state until it is read out and reset by the D.A.Q. crate.

The electronics boards communicate by a token-ring network with the data

acquisition (D.A.Q.) system. This system is set up in a V.M.E. crate beside

the detector. The D.A.Q. reads and sorts the data arriving from the electronics

boards. Zero-suppression occurs at this readout time, meaning channels with

charge consistent with zero are not saved. Every beam spill is then written to

disk. Since minerva takes data at a low rate (2 Hz is the rate of the beam

spill), there is no need to filter at the data acquisition stage. Filtering of the

beam spills will be done at the analysis stage. The data also needs to be

matched up with minos Near Detector data for muon reconstruction. Offline,

the minerva stream will be matched up spill-for-spill to the minos stream,

and the combined streams will then be fed to the analysis stage.
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Chapter 3 Calibration

The calibration stages can be roughly separated into two: first, the stage

that operates on each channel by itself, and second, the stage of calibrations

that involve two or more channels at a time. The first stage involves exactly

three scaling factors per channel: (1 ) the conversion of charge from analog-to-

digital converter (A.D.C.) counts to femtocoulombs (fC); (2 ) the conversion

of fC to photoelectrons (p.e.) at the P.M.T. anode; and (3 ) a dimensionless

factor representing fiber attenuation between the anode and the center of the

scintillator bar.

More complex calibrations than these use tracks. Because of the interlock-

ing triangle shape of minerva strips (Fig. 3.2), calibrations involving tracks

work on a minimum of two channels at a time. This chapter focuses on my

work on the detector alignment, which is the step that begins tracking-based

calibrations.

3.1 Charge, p.e., and Attenuation Factors

The A.D.C.-counts to fC conversion is measured on each electronics board

before installation, as illustrated in [19, Fig. 18].

For converting fC to p.e., the pedestal level and 1p.e. level of each P.M.T. is

measured continuously during detector running. This dynamic calibration al-

lows for effects due to fluctuations in temperature, voltage, and other operating

conditions. Pedestal levels are measured between beam spills when no detector
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activity is expected. The level of 1p.e. is measured by “light injection,” where

a diode is flashed through a separate fiber-optic at all the P.M.T.’s. This also

occurs between beam spills. Offline, the charge distribution of injected light is

measured, and the 1p.e. peak is found by fitting the distribution. An example

fit is shown in [19, Fig. 20].

Attenuation is measured in each plane before installation. The plane is

scanned with a radioactive source, and a table of signal vs. fiber length is pro-

duced for each scintillator in the plane. Because of the mirror at the far end

of the fiber, the expected functional form of this data is a double exponential.

For some strips, the actual function can be very different than a simple dou-

ble exponential, when defects such as broken fibers and “glue holes” produce

discontinuities in the signal vs. length function. (A glue hole is a refractive

air bubble in the glue. The glue is supposed to bind the fiber to the scintilla-

tor.) By saving all scan data, these defects will be accounted for during the

attenuation factor calculation at reconstruction time.

There are two ways to apply the attenuation factor at reconstruction time.

If a reconstructed track is not available, the attenuation at the center of the

strip is used. This is usually a good approximation, but it does not make use

of the entire attenuation vs. fiber length data that the attenuation scanning

has produced. For isolated hits in the detector, this central attenuation is the

best that can be done.

For hits that belong to a reconstructed track, however, the true fiber po-

sition has been measured, so a better attenuation factor is applied, using a

function of attenuation vs. position, from an interpolation of the scanning

data.
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3.2 Pre-Calibration Compensation for

Alignment Variations

Framed pairs of minerva planes (modules) have no rigid connection to one

another. Plane placement varies even within a module, since the O.D. frame

puts stresses and strains on the scintillator. Installed planes therefore end up

misaligned. The detector alignment was first investigated by B. Ziemer in [25].

These misalignments are measured in situ by the method I document here.

The triangular cross-sectional shape of minerva’s strips will be utilized for po-

sition precision. The tip of each triangle is determined to millimeter precision,

from muon tracks. Next these positional data are expressed as affine transfor-

mations acting on the planes as rigid bodies. The transformation parameters

become minerva’s “alignment constants.”

The alignment constants are needed for track finding, and also for energy

calibration. I will show how the alignment supports the energy calibration,

and then will describe my contributions to the energy calibration.

Utilization of Triangular Strip Shape

The unique feature of the minerva detector is its triangular strips, installed

in alternating directions to form planes (photo, Fig. 3.1). The minerva design

means that a relative energy calibration (“strip-to-strip” calibration) must be

delayed until after the alignment constants are provided. To see why this is so,

consider that a strip-to-strip calibration means taking every channel’s spec-

trum of q/δS for minimum ionizing particles (mips), where q is the measured

energy and δS is the distance through the scintillator. This problem is easier

32



Figure 3.1: Scintillator strips, without optical fibers, laid out on a table.
Individual strips are coated with white TiO2 paint. Photo from Fermilab
Visual Media Services, Negative No. 05-0144-16D.

for rectangular-strip detectors than for minerva.

In detectors of rectangular strips, there is no difficulty finding tracks with

known length δS. When the hit is a “single,” i.e., having no adjacent hits

in the same plane, then the track length through that scintillator is given by

δS = L sec θ, where L is the scintillator thickness, and θ is the track angle

to the detector z-axis. It should be clear that minerva does not have this

convenience. Tracks crossing triangular strips can take any length (Fig. 3.2).

The track length will correlate very little to the angle θ.

I suggest the solution to this problem in Figs. 3.2 and 3.3. The solution is

to discover a different variable, instead of θ, that predicts the track length in

one scintillator. The total distance crossed in one plane remains L sec θ but

this distance is spread across two independent channels, with distance δS1 in

the first channel and δS2 in the second channel. Neither δSi is knowable from

the track angle θ alone. Fig. 3.3 suggests how the x-position1 should be used

to calculate δS for shallow angle tracks.

1In this section, the x direction refers to the direction of increasing strip number. This
is the detector coordinate x only when the view is X.
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Figure 3.2: Track in two minerva strips. In general, the strips have different
mip levels. Without a single mip factor for the two strips, there is no exact
relation between the track length L sec θ and the total charge q1+q2. (L = 1.7
cm is the strip height and the plane thickness.)

Figure 3.3: Expected charge in one minerva strip. For shallow angle tracks,
the deposited charge qi is approximately proportional to L− |xi| (Equation
(3.A), since the triangle is close to right isosceles). The sign of x is important.
This figure depicts a small positive x1 and a large negative x2.
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Locator of Triangle Tip for Shallow Angle Tracks

I will use the x-positional data to find track lengths δS, but this assumes

critically that the strip boundaries are known well. This is the argument for

putting the detector alignment first, prior to the strip-to-strip calibration. In

this subsection, I will find all the strip boundaries in x using muon tracks.

In the approximation that follows, all track angles θ are less than a few

degrees.

We define the base variable x as the coordinate where the track enters/exits

the triangle on the base side (Fig. 3.3). This x is zero on the midpoint and

takes on values from −B/2 to B/2 (where B = 3.3 cm is the base length).

The path can now be estimated as

δS ≈ L− |x|. (3.A)

For approximation (3.A), the triangle is made exactly right isosceles, and the

track is made exactly normal incident (so that θ is ignored entirely). Muons

entering the front of minerva do not have high enough θ to break this ap-

proximation significantly.

The trick now is to check, experimentally, whether the greatest charge

occurs at x = 0. If it does, the plane is aligned. If not, an alignment parameter

will be applied to line it up.

We assume that the plane is a rigid body that has translated away from its

ideal position, by a distance s along its x-axis. We measure that translation as

follows. From a sample of muon tracks, hits are selected where two conditions

coincide: (a) there is a hit above zero-suppression in some electronics channel
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in that plane, and (b) the fitted track line2 enters and exits the ideal strip

volume corresponding to that channel.

Generally, conditions (a) and (b) are almost identical. A few events sat-

isfy only one or the other of the conditions. A hit of small value may cause

a strip to lie in the geometrical track line, while zero-suppression hides the

charge in the electronics channel. On the other hand a delta ray (δ-ray) may

cause a neighboring strip to have charge that does not lie in the line. These

occurrences are usually infrequent and can be ignored. When the mismatch

is not infrequent, it indicates bugs in the mapping of physical scintillators to

electronics channel numbers, from optical fibers having been plugged into the

wrong electronics channels. The data obtained here can clear the bugs. This

idea will be pursued further (§3.3).

To complete the measurement of s, the user now measures mean charge

〈 q 〉 versus base coordinate x for the plane under consideration. The result

looks like Fig. 3.4. The triangular cross-sectional shape of the minerva strip

is clearly seen. We measure the peak position by fitting the plot to a triangle-

shaped function, such as

y(s, q0; x) = q0 |L− (x− s)| (3.B)

(where s and q0 are the parameters of the fit). After the fit, the peak position

s is the shift that puts the plane into alignment. The rounding of the peak,

visible in Fig. 3.4 data but not in the fit function, is thought to be due to the

fiber hole, which runs down the middle of the strip though the height. (The

2Tracking can be performed before alignment as perfect track-fitting is not needed here.
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Figure 3.4: Method to measure rigid plane shift. Plot by C. M. Marshall
and the present author. This example shows minerva module 61, plane 1.
Fitting function (3.B) is shown. The x-axis bins are 0.5 mm wide.

other fit parameter q0 is a scale parameter that is thrown away. The strip-to-

strip calibration will provide the correct scale, per individual channel.)

Rotation About the z-Axis

The plane’s affine transformation will include a rotation θ about the z-axis.

The rotation is found by the same process as above, with a slight variation.

Let the plane be divided into a handful of sections in the y-direction like Fig.

3.5, where two measurement sections are shown. By comparing the s returned

for each section the rotation can be determined. If the plane is not rotated

about z, then all sections will return the same s. But if the plane is rotated,

the difference of sbottom and stop (for example) measures the rotation in radians
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Figure 3.5: Method to measure rigid plane rotation. The plane with a ro-
tation θ about the z-axis is seen. To measure θ we divide the plane into a
handful of sections. Shift stop (sbottom) is measured with muons restricted
to the top (bottom) shaded section. The distance D is between the sec-
tional midpoints. The rotation θ about the z-axis can be calculated by
equation (3.C).
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by

θ =
stop − sbottom

D
(3.C)

where D is the distance from the midpoint of the top section to the midpoint

of the bottom section. With D ≈ 2 meters and s ≈ centimeters, rotations in

milliradians are found. More sections can be used for greater confidence. My

actual implementation uses six sections. This is illustrated fully in Figure 24

of reference [19].

Generalization to Steep Tracks

The minerva Test Beam detector, situated above ground and calibrated with

cosmics, was found to fail the alignment procedure. The problem was high-

Figure 3.6: Normal incidence correction. The true path δS is represented
by the thin solid lines, while the normal-incident path δS⊥ is represented by
the thick lines. The true path may have a component in the ±y-direction
(normal to the page) whereas the normal-incident path may not. Note that
δS⊥ = δS when θ = 0. Figure adapted from [26].
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angle cosmic tracks break approximation (3.A) badly.

The author of [26] rescued the procedure with a simple correction. Refer-

ence [26] defines the normal-incident path (δS⊥) as the distance along a line,

normal to the base, from the track entry/exit to an arbitrary point on the

other leg (Fig. 3.6). The two paths δS and δS⊥ will be calculated with ray

tracing and not with approximation (3.A). Now, the user makes the graph of

〈
q δS⊥
δS

〉
(3.D)

versus x, in place of uncorrected 〈 q 〉 versus x.

Formula (3.D) is valid because it reduces to 〈 q 〉 when the track angle is

small, so the shallow angle procedure is unmodified by this change. But for

tracks of steep angle, it approximately predicts the energy loss that a shallow

angle track would have at the same base (see Fig. 3.6). The alignment can

proceed as before.

The plane affine transformation as far as we measure it has just shift along

the transverse axis and a rotation about the z-axis. This parameter set does

not attempt to describe all alignment effects. However, it is demonstrated

sufficient for its main purpose, which is accomplishing the strip-to-strip cali-

bration. The alignment does not require a second iteration. Re-running after

the first iteration is found to return residual shifts and residual rotations all

consistent with zero. Reference [26] states, “The resolution of the alignment

is several tenths of millimeters and several tenths of milliradians; further iter-

ations will not improve these figures.”
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3.3 Validation of Fiber Routing

As mentioned previously, the alignment algorithm also produces a tool for

debugging the routing of fibers. During the alignment we make a database

of strips that do not lie in the track or do not fire when expected. The most

common error of this type is the pair swap, where two adjacent fibers cross.

The pair swap looks to the detector like Fig. 3.7.

Pair swaps are detected by producing Fig. 3.8 once per channel. This plot

of q vs. x shows whether the strip is misplaced one strip-width to the left or

to the right. The plot can be viewed by eye for the list of suspicious strips, or

scanned by an automated script for the entire detector. Normal strips will be

peaked at x = 0 since this has already been corrected at the alignment stage.

But in the case of a swapped pair, the lower strip number in the pair will be

centered at +B/2 and the higher strip at −B/2. These anomalies were not

detected earlier by Fig. 3.4, since the 125 correct strips dominate the sum.

Since the shift is unmistakably large, it is easy to spot this pattern for every

case where it occurs. Fig. 3.8 shows a normal strip compared to to a strip that

was discovered pair-swapped with its adjacent neighbor after installation.

After pair swaps have been exhausted, when other suspicious strips re-

main, an algorithm (originated in [26]) systematically correlates the q in one

strip against the δS of every other strip until matches occur. The alignment

procedure may be run “for real” after routing errors are completely corrected.

41



Figure 3.7: Diagram of a pair swap. The crossing of two optical fibers causes
adjacent strips to appear in each other’s place.

Figure 3.8: Method to detect pair swaps. This pair of plots is q vs. x for
two individual channels (left: module 75, plane 2, strip 63; right: module 2,
plane 1, strip 76). The swap in module 2 was corrected after its discovery.
The horizontal axis is the base coordinate x, in bins of 2 mm; the vertical
axis is the sum of q in each bin.
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3.4 Relative Energy Response Calibration

This author developed minerva’s strip-to-strip calibration initially. The final

form of this calibration is described well in reference [19], so I only need to

give an outline of it here.

The rate of energy loss 〈 dE/dx 〉 of minimum-ionizing muons is a slowly-

varying function of the muon energy. numi muons from the upstream rock

provide a constant source of these mips, and all strips in the detector are

exposed to the same mip spectrum. The 〈 q/δS 〉-response of each strip should

be scaled by a multiplicative constant to make them uniform.

The initial problem in strip-to-strip calibration for minerva is measuring

δS, to produce a spectrum of q/δS that accurately reflects the mip-level in

a channel. The physical part of the problem is solved in the alignment as

described in the section previous. We are now ready to measure q and δS in

any strip. To accomodate minerva’s strip shape the path δS is measured by

ray tracing.3 Ray tracing has already been mentioned in connection with the

steep-tracks generalization of alignment, and will be used again here.

For each front-entering muon track, we determine a parametric equation

~x(t) for the track line or curve.4 For each strip, solve this equation for the two

values of t where the track intersects the strip surfaces. The strip is modeled

as a triangular prism with five faces (three long sides and two caps). The

intersection points will usually fall on the base side and one of the lengthwise

sides; the two caps rarely play a role here only rarely, for tracks very near the

3We now abandon Equation (3.A), as this was just a trick to make the alignment go
initially.

4t is an arbitrary geometric parameter, not necessarily time. The method is called “ray
tracing” because t gives the curve a direction, as a ray.
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Figure 3.9: Deposited energy versus scintillator path. This two-dimensional
graph shows the linear relationship between 〈 q 〉 and δS for one strip in
the detector. The black points show the mean of q in each column. No
truncation is applied. In order to make 〈 q 〉 → 0 as δS → 0, events in the
bottom row (q = 0) must be included when the column mean is taken.

edge. When the entry and exit parameters t1 and t2 are determined, then

δS = |~x(t2)− ~x(t1)|. (3.E)

Detector software frameworks may provide the capability to do this ray tracing

as part of their detector geometry package. The strip description can be

pulled from a geometry database, the same way it would be accessed by the

detector simulation package. Intersection values of t can be found using library

functions in the framework.

Now the q/δS measured in this manner should be averaged over many

tracks in the one channel. Long calibration intervals are defined in order to

collect thousands of muons per channel. Fig. 3.9 shows (δS, q) in minerva

module 75, plane 2, strip 64. It is demonstrated that the average q (untrun-
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cated) is proportional to δS. To get 〈 q 〉 → 0 at small path, and preserve

the proportionality, it is critical to count events where the track clips a small

corner of a strip, when no charge is recorded above suppression. These events

are needed to pull down the average q at small paths. These “hits” of q = 0

can only be found by ray tracking.

When this data is presented as a 1D plot of q/δS it becomes a distribution

with Landau-like features (round peak, long thick tail). The reader may see

[19] for details of the calculation of a truncated mean MeV/cm. This mean is

now a representation of the mip-level in that channel.

The mip-levels for all channels will finally be expressed as dimensionless

scaling constants. Using xi as the the truncated mean q/δS (MeV/cm) for the

ith channel in the detector, the calibration constant defined as

Ci =
xi

−1

〈 x−1 〉 (3.F)

(where the average in the normalization factor is taken over all the strips in

the detector) is the scaling applied to that channel to get uniform mip-level

across minerva.

Lastly, a correction-to-the-correction for handling the peak-mean difference

in different detector regions is described in [19].

3.5 Absolute Energy and Timing

The calibration of absolute energy is a small step away from the equalization of

relative strip response. The absolute calibration uses muons of known momen-
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tum, which have been measured in the minos N.D. At each plane, the true

muon energy is computed, by adding the energy loss in downstream materials

to the muon energy at its entry into minos. The measured energy loss dE/dx,

computed now by E sec θDet for the total muon energy in that plane, can now

be compared to the result of energy loss theory [36]. A single correction factor

for the entire minerva detector now converts measured charges to calibrated

energy in MeV.

A final aspect of the calibration chain is timing. Time data from muon

tracks is found by converting the fiber length to a delay (assuming light travels

through the fiber at a known speed), in the same manner as converting the

fiber length to an attenuation. Using this time data, electronics boards at

different locations in the detector are synchronized to one another, by using c

as the speed of muons through the detector. Every hit can now be assigned

a time along with its charge. For isolated hits, without a track, the true fiber

position has not been measured. In this case the hit time is assigned as the

discriminator time minus the delay to the center of the scintillator.
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Chapter 4 Simulation

4.1 Monte Carlo Beam Simulator

The geant4 v9.2.p03 simulation softare [27] is used to generate the neutrino

flux to the detector. The simulation begins with protons interacting with the

graphite target at 120 GeV. The produced pions and kaons are transported

through a simulation of the numi beamline, and then allowed to decay. The

uncertainties are summarized in Table 4.1, along with cross-section uncertain-

ties.

Hadroproduction in the target is adjusted to match data [28, 29]. Hadrons

are produced using a certain model FTFP–BERT in geant4, however, the

results will be adjusted in such a way that the model is not necessarily pre-

served. Each hadron produced is given an event weight. The value of the

Figure 4.1: π 12C interaction model for beam simulation. From [30].
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weight is a function of its Feynman scaling variable xF and its transverse mo-

mentum pT . The weight attempts to make the simulated hadroproduction

agree with data. By choosing an appropriate weighting function, the weighted

simulation can be always be a good model of the data, whatever the bare re-

sults of the unweighted simulation. Figure 4.1 shows the weighted simulation

cross-section for π+ production in the target, along with hadroproduction data

points from [29].

The hadroproduction uncertainty model can be explained briefly. When

the neutrino’s mother particle is the direct product of a p12C collision in the

target, and the collision’s kinematics (xF , pT ) are within the coverage of our

external hadroproduction data sets, then the model reweighted to data is used.

The uncertainty is propagated from data [29]. It includes systematic uncertain-

ties totalling 3.8%, plus statistical uncertainty depending on the (xF , pT )-bin,

but generally under 10%.

Use of the model reweighted to data is possible on only about 70% of events.

For the remaining 30%, where the neutrino may descend from a reinteracted

(or “tertiary”) hadron, or where the kinematics are out of the external data

set’s coverage, we must resort to model spread within the Monte Carlo to

estimate an uncertainty. The hadroproduction model in geant4 is changed

to: QGSP, FTFP–BERT, QGSC–BERT, QGSP–BERT and FTF–BIC. The model

spread can be the dominant uncertainty for events in the high energy tail of Eν .
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Parameter Value Uncertainty

Flux
P.O.T. per Spill ≈ 35× 1012 ±2%

Fraction of Protons in Baffle 0.001 ±0.25%
Target Offset (z) 0 cm ±4 cm

First Horn Offset (r) 0 mm ±1 mm
Horn Current 185 kA ±1%

Horn Conductor Skin Depth 7.7 mm (6 mm, ∞)
Hadron Prod. Cross-section (stat.) f(xF , pT ) ±(1, 10)%
Hadron Prod. Cross-section (syst.) – ±3.8%
Model Spread for “tertiary” events Different Models

(Quasi-) Elastic Model
N.C. Elastic MA 0.99 GeV ±25%
N.C. Elastic η 0.12 ±30%
C.C.Q.E. MA 0.99 GeV +25(−15)%

C.C.Q.E. Normalization 1.0 +20(−15)%
C.C.Q.E. Vector F.F. Shape Dipole or B.B.B.A.

C.C.Q.E. Pauli Blocking Momentum Cutoff kF ±30%

Resonance Model
C.C. Resonance Normalization 1.0 ±20%

Resonance M∆
V 0.84 GeV ±10%

Non-Resonant Pion Production Model
for the Transition Region at W < 1.7 GeV
(Value is fraction of B.Y. cross-section)

Non-Resonant ν p→ 1π, ν̄ n→ 1π 0.1 ±50%
Non-Resonant ν n→ 1π, ν̄ p→ 1π 0.3 ±50%
Non-Resonant ν p→ 2π, ν̄ n→ 2π 1.0 ±50%
Non-Resonant ν n→ 2π, ν̄ p→ 2π 1.0 ±50%

Values and uncertainties compiled from [24], [29], [31], [32].
Notation (a, b) means the uncertainty is produced by shifting the value from a to b.

Notation ±(a, b)% means the uncertainty varies between ±a% and ±b%.

Table 4.1: Systematic uncertainties affecting flux × cross-section.
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Figure 4.2: Generated C.C. events. This figure shows two example quantities
for charged-current events generated in the fiducial volume. Wrong-sign
muons, from ν̄µ in the flux simulation, are colored in red. The dotted band
shows the flux× cross-section uncertainty.

4.2 Monte Carlo Event Generator

For generation of events in the detector, genie v2.6.2 event generator software

[31] is used, with neutrinos from the flux simulator provided as input. In genie

v2.6.2 the available physics model for resonance production is a representation

of the classic model of Rein and Sehgal [7]. The implementation sets the

parameterM∆
A to a default of 1.12 GeV (the value suggested in [8]). To change

it to another value of M∆
A , the implementation allows events to be reweighted.

Using reweighting, I apply values of the resonant axial mass from 0.45 GeV to

1.79 GeV. Table 4.1 includes uncertainties applied to other cross-sections to

generate the total flux × cross-section error.

The event generator produces neutrino events for all helicities and flavors

(νµ, ν̄µ, νe, ν̄e). The spectrum of generated events, for our simulated flux,

is shown in Fig. 4.2. The discontinuity at W = 1.7 GeV arises from the

transition from the resonance model to the Bodek-Yang (B.Y.) D.I.S. model.

In order to include non-resonant B.Y. background at low W , while avoiding

double-counting, the cross-section at W < 1.7 GeV is modeled as the sum
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of the resonance cross-section and a fraction of the B.Y. cross-section. (The

fraction used, for each target nucleon and pion multiplicity, is given in the

Value column of Table 4.1.) At W > 1.7 GeV the transition model is dropped

and the full B.Y. cross-section is used. The reader can refer to §2.1.3 of the

“genie Physics and User Manual” [31] for a more complete description of its

cross-section model and handling of the transition region.

The events are generated upon target nuclei in a subvolume of the minerva

detector. The generation volume includes all of the tracker, but the O.D. and

all modules downstream of the tracker are excluded. To get O.D. events and

entering muons in the simulation, a sample of these events are recorded from

data, to be interleaved with Monte Carlo-generated events. In this way, a

simulation stream of mixed event types is created.

Each generated C.C. event falls in one of these categories: “Q.E.” for quasi-

elastic, “Coherent” for coherent pion, “1π” for single pion other than coherent,

and “Nπ + strange” for all others. I use these categories in plot legends

frequently. Fig. 4.2 is an example. One clarification regarding the legends:

Like every modern event generator, genie has a final-state interaction (F.S.I.)

model for A > 1 nuclei, that allows hadrons to reinteract upon spectator

nucleons. F.S.I. can change the final state particles before they are ever handed

off to the detsim for propagation through the detector. By definition, F.S.I.

only applies to target nucleons with A > 1. The minerva tracker contains a

variety of mass numbers but principally carbon, A = 12 (see Table 2.1).

The demarcation between Q.E. and 1π on nuclei with A > 1 in the presence

of F.S.I. is sometimes a matter of some confusion. By the “theorist” conven-

tion, an event is Q.E. (1π) if and only it is Q.E. (1π) before F.S.I. However,
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when the F.S.I. model executes, any generated Q.E. event could become an

“experimenter’s” 1π event, by the proton reacting inelastically on a spectator.

In the other direction, a theorist’s 1π can become an experimenter’s Q.E. by

its pion getting destroyed on a spectator. In the nomenclature that seems to

be emerging around this problem, the names “Q.E.-like” and “1π-like” are

employed for the post-F.S.I. status, so that an event is Q.E.-like (1π-like) if

and only if it has no (one) pion after F.S.I. I use the “theorist” convention.

While the precise effects of F.S.I. are not always important, one place where

a difference is made is in interpreting the reconstruction acceptance. Events

that are generated as 1π but do not reconstruct with a pion track are a mixture

of two categories. The first category is true reconstruction failures, where the

pion ionizes the scintillator but reconstruction returns no track for it. The

second category is Q.E.-like events where the pion is destroyed before exiting

the nucleus. A true reconstruction acceptance figure should be measured on

the first category only.

4.3 Monte Carlo Detector Simulator

Final state particles from the event generator are handed to a geant4 [27]-

driven detector simulator. At this point, I will begin to look at pion rein-

teraction in detail. Detail of a geant4-based presistence scheme for pion

reinteractions appears in Appendix A.

For pions from 1π events generated in the fiducial volume, the simula-

tion predicts that 13.7% of pions stop. The remainder of the pions scatter

(elastically or inelastically), decay in flight, are captured in flight, or exit the
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detector without stopping. The fraction of pions that stop in the fiducial is

9.5%. We can set an upper bound on reconstuction efficiency by continuing

this calculation one step further. The threshold of tracking is about six planes.

By requiring the pion stopped in the fiducial to have gone six planes (either

forward or backward) from its piont of origination, the fraction is reduced to

3.2%. Since tracking has a 6-plane threshold, and the analysis will require the

pion to stop in the fiducial, 3.2% is an absolute upper bound on the recon-

struction efficiency.

In the general case, the pion may scatter. The simulation will return a

“lifeline” (Appendix A) showing the place and type of each activity expe-

rienced by the pion. Let us suppose that one activity point is chosen as a

reference. (For reconstructed pions, the reference will actually be chosen at

reconstruction time, and it will be the activity which is spatially nearest to

the end of the reconstructed track.) For each pion in the simulation, I will

choose a reference from its lifeline and classify it based on its activity at the

reference. I use these categories:

1. Stop, if the pion is at rest (i.e., magnitude of the 3-momentum is zero)

at the reference point. It may decay or be absorbed at the rest point.

2. Decay in flight (D.I.F.), if it decays at the reference point and is not at

rest.

3. Absorption in flight (A.I.F.), if it is absorbed at the reference point and

is not at rest

4. Elastic Scatter (E.S.), if pion scatters elastically at the reference point.
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5. Charge exchange (Q.E.X.), if it becomes π0 through a nuclear interac-

tion. This may occur in flight or (less frequently) at rest. (It should be

noted that charge exchange from π+ to π− is a charge exchange process

physically, but I count these events under Inelastic Scatter and not under

this category.)

6. Inelastic Scatter (I.S.), if the pion scatters inelastically at the reference

and the products contain exactly one π+ or exactly one π−.

7. Multiproduction, if the inelastic process produces other pion(s). Exper-

imentally this appears as either a forked track, or a π0 → γγ pointing

back to a kink point. Since our pions are well below hadronic showering

energies, this category is rare.

Changing the reference point causes pions to migrate among these cate-

gories.

In the next chapters, I will separate Stop versus the other categories using

the ionization profile at the end of the found track. With that direction in

mind, let us now turn to the topic of event reconstruction.
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Chapter 5

Reconstruction and Selection of
Events

Event reconstruction proceeds in three stages. First, I require a muon track:

this track must originate in the fiducial volume and continue into the minos

N.D. Second, I consider the total hadronic energy in the minerva detector.

Third, if the hadronic invariant mass W̃ as measured by this method passes a

D.I.S.-rejecting cut at 1.5 GeV (and some other cuts at this stage are applied,

as will be explained in the below text), then I look for two more features in the

event: (1 ) other tracks at the muon vertex, assumed to be hadron tracks, and

(2 ) a Michel decay electron at the end of a hadron track. If these are found,

and the event is consistent with 1π kinematics, then the event is selected.

5.1 Hadronic Calorimetry

We would like to begin searching for single-pion events, by separating these

events from D.I.S. Our first tool is to use minerva entirely as a calorimeter

for hadrons. This involves taking a muon track, which enters the minos N.D.,

and subtracting out the energy deposited by it—ionization by the muon, delta

rays, and cross-talk. The remaining (hadronic recoil) energy is measured by

calorimetry.

The calorimetry measurement is described in [19] and summarized here. In
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Region Ci

Tracker 1.222
ECAL 2.013
HCAL 10.314

α = 1.568

Table 5.1: Calorimetric constants.

an event with a minos muon, hits considered part of the hatronic response fall

in the time window defined by −20 ns < t < 35 ns, where t is from the time

of the muon appearance. The hadronic recoil energy ẼH will be measured as,

ẼH = α
∑

i

CiEi (5.A)

where Ei is the energy in the ith channel and Ci is a calorimetric constant.

The constant Ci represents ionization energy deposited in passive materials

surrounding that scintillator. (If the hit Ei does not belong to a reconstructed

track, then no y-position information is available, so the optical attenuation

at the fiber mid-point will be applied. But if the hit is a member of a re-

constructed hadronic track the attentuation can be applied more accurately.)

The overall scale α represents energy carried away by non-ionizing particles.

Finally, a small “polyline” correction is made to the result of Eq. (5.A) to

correct from the mean true EH to the peak true EH . This last step alters ẼH

a few percent from the result of Eq. (5.A). The polyline-corrected ẼH is the

one used.

I use the notation of a tilde, ˜, to keep this variable distinct from the

other hadronic energy, EH = Eπ + TN , that is calculated by the hypothesis
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that the event is ν N → µπN ′. The kinematic EH can be more accurate on

actual single-pion events than the calorimetric ẼH .

The constants Ci and α are given in Table 5.1. The complete set of “tilde”

variables can now be calculated for events with an analyzed muon, as follows:

Ẽν = Eµ + ẼH

Q̃2 = 2 Ẽν

(
Eµ − pµz

)
−m2

µ

W̃ =

√
max

(
0, m2

N + 2mN ẼH − Q̃2
)

(5.B)

The hadronic mass W̃ can now be used to enhance single-pion events, as shown

ahead (Fig. 5.4).

5.2 Track and Particle Recognition

The µ−

In a charged current (C.C.) event having one or more found tracks, one track

will be tagged as the muon. The track pattern recognition [19] is used first

to determine an “anchor” track. This is the longest track in the event. If

the anchor track agrees by time and by spatial projection with a muon track

entering the minos near detector, then this track is labeled the muon and the

reconstruction continues. (The kinematical space for minerva muons entering

into minos is somewhat narrow. The muon must have momentum more than

1.5 GeV/c and angle less than 25 degrees.)

The muon’s energy is determined by the sum of its minos energy and
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the energy that was absorbed by material between the event and the front

of minos. This material usually including some interdetector material, the

entire length of the minerva detector’s ECAL and HCAL, and (finally) tracker

material. If the muon stops in minos, its energy is determined by range,

otherwise by curvature. The momentum resolution is 5% by range or 10% by

curvature [19].

The π+ and optional p

After the muon is tagged, and if its starting point is found to be within the

tracker, my reconstruction proceeds by attempting to supply the tracks rep-

resenting π+ and N ′, in the event hypothesis ν N → µ− π+N ′. Tracks them-

selves are not constrained to exactly touch at vertices. There is allowed to be,

for example, a 2 cm gap in z (the separation of planes) between tracks that

appear to connect at a vertex. When new tracks are added near a vertex, a

vertex point is assigned at minimum distance of closest approach (D.O.C.A.)

Figure 5.1: Reconstruction Strategy. Beginning at the muon vertex, a recur-
sive search is made for other tracks.
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from each of the connected tracks. But the vertex point is a separate piece of

data from the track endpoints.

I attempt to build tracks branching out from the muon vertex. In overview,

this is a search for any number of tracks, followed by a search for Michel

electrons at track endpoints. The event is rejected unless one and only one

Michel electron signal is found. The track representing N ′ (presumably a

proton p) may or may not be found during this search.

In full detail, the search proceeds as follows. I use an algorithm which

attempts to build tracks near any supplied vertex. Beginning with the muon

vertex, the algorithm proceeds recursively at each new track’s end vertex until

no more tracks can be made. After the recursive track-building is finished,

a search for suitable Michel electron signals is made through the track tree.

This search attempts to find exactly one Michel signal among the non-forked

primary tracks. A primary track satisfies the Michel electron search if and

only if two conditions are satisfied: (a) it is not forked; thus, it is a line or

polyline, and (b) a Michel electron signal is detected at the leaf of the polyline.

Fig. 5.1 illustrates a situation with exactly one primary track satisfying the

tree search. Primary track (I) leads to a leaf with no forks. The leaf initiates

a Michel signal search and the signal is found. In the case of primary track

(II), the search for a Michel signal never occurs because the search of the track

tree terminates at a fork. Primary track (III) comes to a leaf with no Michel

signal.

For typical events, all this machinery is not necessary. Forked tracks are

only vanishingly probable. Tracks with more than one level of depth are about

4% of the sample (see Fig. 5.5). Thus, the search for a Michel-tagged primary
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Figure 5.2: Michel e+ signal. Data with cuts according to Table 5.2.

track is usually not complicated. It reduces to checking the track endpoint for

the Michel electron signal.

If one Michel-tagged primary track is found, then reconstruction is success-

ful. The pion energy is set by the range of a stopping pion. Note that this is

wrong more often than not; less than half the pions actually stop. Implications

of this will be discussed ahead (Chapter 6).

The Michel e+

Obviously, the Michel electron signal is the vital part of this reconstruction.

This technique appear to be a minerva first. Earlier scintillator experiments

have not used Michel electrons for pion identification, so far as I know, although

it was used to good success by MiniBooNE with Čerenkov. Reference [33] will

have the description of minerva’s Michel electron finding algorithm so I will

give just an outline of it here.

Physics events in minerva generally are contained in a “time slice,” which
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is a span of a few tens of nanoseconds. Hits corresponding to a Michel electron

are expected to occur long after the slice. The principle of the Michel search

is that random activity at the spatial point of an earlier track end is unlikely.

Hits found near that point at any later time are possible Michel activity. A

space point (corresponding to the end of a found track) and an initial time are

given to start the search.

Michel electrons do not meet the 5-plane threshold for line definition. For

this reason, the signal will be built out of clusters (contiguous groups of scin-

tillators with activity) but not out of tracks. A cluster has a z-coordinate

and one transverse coordinate but no coordinate for the third dimension. To

define the search region, a rectangular window is drawn around the search

point. The search rectangle sides are 25 cm in z and 35 cm in any transverse

coordinate. Clusters falling within this window must be later in time than the

search time parameter, have a fired discriminator1 and a cluster energy of at

least 0.8 MeV. If any clusters in the window meet all these criteria they are

counted as the Michel signal. The window size and threshold energy had been

deduced from the Michel spectra of stopped, front-entering muons.

The Michel electron finder is 80.9% efficient [34] on muons that enter the

front of minerva and stop in the tracker. Most of the inefficiency seems to be

the loss of prompt Michel electrons, occurring < 1 µs after the muon or pion

stops. These events may be lost during the electronics “dead time,” while the

electronics channels reset themselves in preparation for recording another hit

during the same gate.

1The discriminator fire guarantees a valid time stamp. Invalid time stamps can occur
when the discriminator on a different channel forces readout of all channels in an electronics
group.
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Cut Description See Figure

Target In Fiducial see note (1 ) 5.3

Event Energy Ẽν < 10 GeV 7.5

1π Enhancement W̃ < 1.5 GeV 5.4

Pion Not Kinked segments = 1 5.5

Length End-to-end see note (2 ) 5.6

Length Vertex-to-end see note (3 ) 5.6

End Contained see note (1 ) 5.3

Sane Michel Energy 5.0 < E < 55 MeV and note (4 ) 5.2

Sane Michel Hit Count hits < 35 5.2

Proton Rejector χ2
p > 36 6.7

Allowed Kinematics
∑

{µ,π}
(E − pz) < mN 7.1

Coherent Event Rejector TN > 40 MeV 7.3

minerva Detector Live tdead < 2 5.5

2- or 3-Track tracks < 4 5.5

Muon Charge −1 q/p < 0 5.7

(1 ) 27 ≤ module ≤ 79 and ρ6 < 85 cm. (2 ) |pion last plane− pion first plane| ≥ 6.
(3 ) |pion last plane− vertex plane| ≥ 6. (4 ) If all the Michel hits are in the same view, and
if the Michel hits are simultaneous with another time-separated event, then the second

event deposits less than 100 MeV in minerva.

Table 5.2: Cuts defining [C.C./1π+/resonant].

5.3 Cuts

At this point in our algorithm, muon and pion reconstruction have completed,

and we are able to refer to their results. We define cuts to select charged

current, single charged pion, resonant events. I abbreviate this selection using

the symbol [C.C./1π+/resonant]. The cuts are summarized in Table 5.2.

To better present the cuts, they are arranged into four cut categories.
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The first cut category selects single pion events; the second category selects

quality pion tracks; the third category selects events which are kinematically

compatible with the hypothesis ν N → µ− π+N ′; and the last category is a

miscellaneous collection of sanity checks. The cut descriptions, below, are

followed with a suite of figures, illustrating the action of each cut. In the plots

that follow, the Monte Carlo is scaled to match the data (area normalized).2

Non-D.I.S./Single Pion from Fiducial Target

The counterintuitive part is that, after so much work has been done to obtain

a pion track, we cannot use it until we think there are no more pions in the

event. Many pions, π0’s most obviously, and high angle π±, do not leave

findable tracks. This first cut category attempts to narrow down as much as

possible to single pion events on scintillator. We use calorimetric variables

(Eq. (5.B)) before we are sure the found pion track is safe to look at. The pion

track complexities are handled in the next cut categories rather than here.

• Target In Fiducial. The fiducial region in z corresponds with the tracker

region of minerva, with a few centimeters of veto space on all sides.

The coordinate in z is measured by module number, and extends from

module 27 to 79. The contained pion, usually forward-going, prevents

the vertex from approaching too close to the downstream boundary in

z, at the 79th module (Fig. 5.3(a)). The radial coordinate ρ6, plotted

2I use a simple convention for plots which illustrate the action of cuts. If the x-axis
variable is a cut variable, and the axis range extends beyond the cut value, then a marker is
drawn at the cut, and that cut is turned off for the outside of the marker. Area normalization
is applied to the inside of the marker. Besides this exception, every histogram has cuts as
in Table 5.2 exactly.
I use the rule that the same plot should not appear in two chapters. My placement of

figures corresponds best as possible with the associated chapter text.
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Figure 5.3: Event Vertex and Pion End Point. The left column shows the
point of neutrino interaction; the right column shows where the pion stops.

in Fig. 5.3 bottom row, is defined to be the apothem of the smallest

hexagon enclosing the point (x, y) in the plane normal to detector-z. An

explicit formula for ρ6 is,

ρ6(x, y) =





|x| (x2 ≥ 3y2)

1
2
|x|+

√
3
2
|y| (x2 < 3y2).

The radial boundary of the allowed region can now be stated as ρ6 <

85 cm.

• Event Energy. The Monte Carlo model of flux times cross-section cannot

be reliable in the far tail of the flux. I do not consider events beyond

10 GeV. Since the flux nearly cuts off at 5 GeV (Fig. 2.2), this cut is a

gentle one.
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Figure 5.4: Hadronic mass W̃ . From Equation (5.B).
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• 1π Enhancement. The hadronic mass W̃ cut at 1.5 GeVis meant to

eliminate multi-pion events, from D.I.S. and higher-order resonances,

and to focus on single pion events. This cut is illustrated in Fig. 5.4.

Quality of Pion Track

The second cut category selects pions which are likely to reconstruct correctly.

Most significantly, I require pion containment. The pion has to stop in the

tracker volume, where I can take a finely-sampled ionization profile that will

be used to test for stopping (Chapter 6).

Besides containment, I require a number of sanity cuts on the pion, each

explained below. The most significant of the sanity cuts is the proton rejector.

This cut removes about 15% of data events—false positives of the Michel

electron finder—while the other sanity cuts are more gentle.

• Pion Not Kinked. The pion track must be a single segment. This cut

is consistent with my technique of using pions that range out and stop.

Throwing away this cut would increase the sample by 4% only. The use

of kinked tracks is an area of future study.

• Length End-to-end/Vertex-to-end. This pair of cuts concerns the num-

ber of planes spanned by the found pion track. The 6 plane end-to-end

threshold, although nearly satisfied automatically because the minerva

design does not allow tracks shorter than 5 planes (page 26), is imposed

because I want to take 6 samples of the endpoint ionization. The dupli-

cate requirement (end-to-end/D.O.C.A.-to-end) eleminates some misre-

constructions. See Fig. 5.6 for illustration of this difference.
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Figure 5.5: Integer variables. Segments in the pion track, tracks in the event,
and count of dead discriminator groups.
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Figure 5.6: Planes spanned by the pion. The plot on the right uses D.O.C.A.
as the track starting point. Both figures have > 400 events in the overflow
bin.

• Pion End Contained. The pion energy is assigned according to its range,

as measured vertex-to-end. The range requirement alone means that the

pion must stop in minerva. But because I also wish to sample the

endpoint ionization, the stop volume has to be reduced to the tracker,

with no dense material between scintillator planes. These requirements

are satisfied when my containment volume is the same as my fiducial.

• Sane Michel Energy/Hit Count. The originator of the Michel finder

[33] suggests a combination of cuts to be used with it. The Michel
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electron energy is not to exceed 55 MeV, and the (integer) number of

hits comprising it is not exceed 35. Electrons appearing all in a single

plane are more difficult; see the text accompanying Table 5.2 for an extra

rule regarding this case. Each of these cuts has been tuned by the decays

of muons that enter the front of minerva and stop. I also add E > 5

MeV because of a data excess there, as shown in Fig. 5.9.

• Proton Rejector. The Michel finder is not perfectly pure. My proton

identifier, introduced ahead in Chapter 6, cleans up proton tracks that

have a coincidental Michel electron tag (see Fig. 6.7). This cut removes

15% of the data after all other cuts are applied.

Resonant Kinematics

The cuts in this group refer to the applicability of the ν N → µ− π+N ′ hy-

pothesis.

• Allowed Kinematics. It is necessary to check the kinematic space for

ν N → µ− π+N ′. One statement of the allowed kinematics is that the

sum of E−pz for the muon and the pion cannot exceed the nucleon mass

mN (see §7.1 for proof). After other cuts are applied, this cut does not

remove any data events. We take comfort that the cuts in categories 1

and 2 return events with the expected kinematics already. See Fig. 7.1.

• Coherent Rejector. The cross-section for coherent pion production is not

well-known. According to Monte Carlo, when coherent events are recon-

structed in the (incorrect for coherent) hypothesis of ν N → µ− π+N ′,
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they behave as if N ′ is nearly at rest. I avoid this by requiring my

recoiling nucleon to have at least 40 MeV of kinetic energy (Fig. 7.2).

Miscellaneous

• Minerva Detector Live. This cut eliminates an error caused by dead

discriminators. The integer variable tdead (Fig. 5.5) counts the number

of dead discriminator groups upstream of the event tracks. In events with

high tdead, a muon from outside the detector may appear to originate

in the tracker, because its upstream half is not recorded. No data events

were found to fail the standard tdead cut (tdead < 2) after the other cuts

were satisfied.

• 2- or 3-Track. The variable tracks counts the number of found tracks,

including the muon. Our events are expected to have up to three tracks

although they may have only two when N ′ is low energy, or is a neutron.

As Fig. 5.5 shows, about 0.5% of events have more than the expected

number of tracks. These are cut, since they cannot satisfy the hypothesis

ν N → µ− π+N ′.

• Muon Charge −1. Parents of ν̄µ (negative pions and kaons) are not fo-

cused by the magnetic field of the horns. Fig. 4.2 shows the Monte Carlo

prediction of flux× cross-section for ν̄µ C.C. events. Most of these are in

the high tail of Eν due to unfocusing. The muon charge-to-momentum

ratio, q/p, as measured in the magnetized minos N.D., is a useful cut

independent of energy to ensure negative muons (Fig. 5.7). Muons re-

constructing with positive curvature are 7% of the data after the other
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Figure 5.7: Muon q/p Significance. This spectrum shows the direction of
muon curvature, positive or negative, as measure by the minos magnetic
field.

cuts are satisfied (Fig. 5.7). Monte Carlo predicts that the for the major-

ity of these positives, their curvature is close to undetermined and they

are true µ−. In any case, I require q/p < 0 as a sanity cut.3

The resulting spectra of muon, pion, and Michel particles are shown in

Figures 5.8–5.9, following.

(In the following plots, I do not display the Q.E. category separately. The

selection efficiency on Q.E. is very low, due to the Michel electron tag, so I

lump this together with not-fiducial (N.F.) and wrong-sign muon (W.S.) into

a catchall category. I show the categories 1π, Nπ+ strange, and Coherent, as

defined in §4.2.)

3For plotting, the dimensionless ratio
q/p

σq/p
is used as the x-axis variable, so that larger

magnitude corresponds to greater certainty about the direction of curvature.
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Figure 5.8: Muon energy and angle.
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Figure 5.9: Pion energy and angle, Michel electron energy and time. The
Michel decay constant (equal to the muon lifetime) comes from a simple
exponential fit to the data in the range 1 µs to 5 µs.
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Resolution

Muon Pion

Energy (1 ) 6% 4% (2 )

Direction x 0.93◦ 3.5◦

Direction y 0.90◦ 3.7◦

(1 ) Total for muon, Kinetic for pion. (2 ) Narrow component of double Gaussian fit.

Table 5.3: Energy and direction resolution.

5.4 Resolution of Reconstructed Particle

Momenta

Fractional residuals for any quantity x are defined as xRec/xTrue − 1. These

fractionals have been shown for x = Eµ, Tπ and W̃ . For particle direction, I

use the absolute residual in degrees.4 The resolution is found by fitting the

residual spectrum to a Gaussian. Table 5.3 summarizes the resolutions I have

obtained for the two particles.

Finally, the bimodal residual (Fig. 5.9, second panel) alerts us to the pres-

ence of pion reinteractions. As a first step to understanding what is going on,

we can look at the detector simulation results.

In Fig. 5.10, I have broken down the true 1π portion of the Monte Carlo

into the pion activity categories defined in §4.3. The majority of reactions

4Two equivalent sets of coordinates were used in presenting the particle direction and
direction residual. The polar coordinates (θ, φ) are defined with respect to the beam (not
detector) z-axis. The projection angles θx and θy are defined according to

tan θx = vx/vz

tan θy = vy/vz

where ~v = (vx, vy, vz) is the direction vector in the beam coordinate system. While I
prefer the familiar polar coordinates (θ, φ) for direction, the projection angle pair is used
for directional residuals, in order to get two-sided residuals.
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Figure 5.10: Simulated reinteraction of pions. Compare Fig. 1.7.

are elastic and inelastic rescattering, E.S. and I.S. Even for the categories of

reaction that occur less frequently—A.I.F., Q.E.X., Absorption—the reaction

causes the pion kinetic energy to be significantly underestimated. Essentially,

the kinetic energy is only correct for Stop.

5.5 Acceptance, Efficiency

While I do not need to perform an efficiency correction on my data, nev-

ertheless we must have some idea what the efficiency is. I estimate the

acceptance × efficiency by taking the ratio of surviving Monte Carlo events

to the number of events generated. The denominator in the ratio is the num-

ber of 1π events generated in the fiducial (equal to the dark blue area in Fig.

4.2). The numerator in the ratio is the number of these events surviving re-

construction and surviving cuts. Fig. 5.11 shows that this ratio is close to

2%. If we make it a function of the generated kinematics, it ranges between

1–2% in the most interesting kinematic regions (low Q2, W near resonance)
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and falls off gradually to zero outside these regions. There are no sharp turn-

ons or turn-offs. Error bars on the figure represent the flux × cross-section

uncertainty.

The shapes of Fig. 5.11 deserve some explanation. First, the turn-around

in the first bin of Q2 seems unexpected for an efficiency shape. The coherent

rejector cut (TN > 40 MeV) operates on events where only very small mo-

mentum is transfered to the nucleon, and is the cause of this mischief. As

the dotted line in the figure proves, the turn-around would disappear if just

this cut were turned off. This is mentioned in particular for readers who are

interested in the low Q2 suppression problem. Directly, my data and M.C.

should not be compared to the usual graphs showing suppression at low Q2

(e.g., Fig. 1.4), since mine are being convoluted in that region by a changing

efficiency.

In order to proceed, we would like to have good reconstruction of the pion

energy. For this reason we turn to the subject of stopped pion identification.
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Figure 5.11: Acceptance times efficiency.
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Chapter 6

Stopped Pion Identification

6.1 Overview of Signal/Background

Separation

This chapter will describe the separation of the stopped pion events from other

events. Hadron tracks of any other type besides stopped pions (including

protons, and pions that rescatter instead of stop where the track appears to

stop) are collectively called background.1

General considerations

Separation of a signal from a background is a general topic. The technique can

be described without any reference to the hadronic physics that defines signal

and background in this particular case. In general, what is desired is a function

mapping events to real numbers. If a suitable function can be discovered, then

the range of signal will be a disjoint interval from the range of background

under that function. Then a cut will be placed at a value between the ranges.

The signal will survive the cut, while the background will not.

The picture becomes more complicated if it events can be ambiguous. If

there exist possible events which could be either signal or background, then

1It may be necessary to distinguish reconstruction background from physics background.

The events to be rejected here as reconstruction background generally are events of the
physics signal (ν N → µ− π+ N ′), where the reconstruction has found a false-positive Michel
decay signal on a pion track ending in an inelastic scatter.
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it is not possible to make the range of signal 100% disjoint from the range of

background, no matter how cleverly one constructs a separation function. In

a mild case, the tail of the signal distribution will overlap with the tail of the

background distribution. The cut can then still be placed between the bulks

of each distribution, with only small losses of efficiency and purity.

However, it is possible to continue even when there is no guarantee that the

ambiguity will be “mild.” (This is already to be expected by looking at the

results of pion I.D. in previous scintillator-bar experiments, with SciBooNE

serving as a typical example (Fig. 1.6). In SciBooNE’s distribution of mip

confidence level, it is difficult to point to any obvious structure, such as a

peak, which could correspond to pions which have stopped in the detector.

This simple example illustrates the subtitles involved in selecting stopped pions

in non-magnetized scintillator detectors.) In order to go further, the necessary

thing is knowledge of and confidence about what shape the separation function

attains on the signal part of the sample of data. This will be explained below.

It will be noted that already in the mild case we have had to make assump-

tions about the shapes of signal and background, e.g., that the signal must

have a bulk and a tail. The background also must have a bulk and a tail, and

the bulk part of it must at least be “somewhere else,” far enough away so as

to not interfere too much with the signal. To get away from the restriction of

mild ambiguity, we just dispense entirely with assumptions about the back-

ground. The signal will have this shape, we say in effect, while the background

will do whatever it wants.

The signal shape and the distribution of data together determine the back-

ground. For a (very contrived) illustration of how this works, suppose that a
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Monte Carlo analysis of the physics of signal determines that the signal shape

has two humps. If the data then has three humps, then it has been learned that

the shape of the background is one hump. Or if the data has only one hump,

then, provided our analysis about the signal shape has been correct, and the

background level stays positive, it’s been determined that the distribution of

background has a valley where one of the peaks of signal was expected to be.

Benefits of the χ2 shape

The capstone of this method, on which it all depends, is being as accurate

as possible about the signal shape before looking at ambiguous data. My

choice is to make the separation function a χ2 because of the known shape

properties of that type of function. The χ2 distribution is typically used for

its statistical properties. I am not interested (primarily) in the statistical

interpretation here, but I will take advantage of the mathematical fact that

the χ2 distribution has a well-studied analytic shape. That shape is especially

easy when the degrees of freedom (D.O.F.) is an even number. In the case of

even D.O.F., the χ2 distribution is a polynomial × exponential. The degree

of the polynomial is (D.O.F. − 2)/2. The polynomial × exponential shape is

easy to work with. The exact signal function used here will be given in Eq.

(6.B).

General S/B separation by sideband

After the data is available, the signal scale and the background distribution

will be determined. The last step of this S/B separation technique is to create a

function that inputs data distributions, and outputs signal distributions. Since
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we are allowing the possibility of ambiguous events, it we cannot tag individual

events as either signal or background. (Events with very large χ2, however, are

unambiguously background. Later, this fact will help us determine the signal

scale, by assuming continuity of the background at the point of transition

between the tail of the signal and the all-background region.) However, it is

always possible to estimate the number of signal and background events in any

bin that is not too empty.

To create distributions of signal from distributions of data, my analysis

will use a background sideband. I begin with the number of events at χ2’s

large enough to be entirely background. Then I add to these an estimate of

the number of background events at moderate and small χ2, according to the

background distribution as determined by all the data. The remaining number

of events is signal (i.e., data minus background). This method is not unique,

however, and an alternative will be considered in Chapter 8.

6.2 Definition of Energy Loss χ2

A stopping particle can be told by its ionization profile near stopping. The

shape of its energy loss is well-determined by the Bethe theory [36]. If the track

ends at a point of scattering or destruction, its ionization shape is unlikely to

look exactly the same as stopping.

By itself, the well-known Bethe equation predicts the rate
〈

dE
dx

〉
(E;m) of

ionization, as a function of the particle energy E and mass m.2 (The mass

2We assume throughout this chapter that the material charge density Z/A, mass density
ρ, and mean excitation do not vary. We also assume that any particle considered has charge
z = ±1.
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Figure 6.1: T vs. x for pions near stopping. The graphed function is a linear
interpolating function, based upon the tabuled C.S.D.A. ranges for protons
in polystyrene from Ref. [37]. The proton mass is changed to the pion mass
by scaling.

Figure 6.2: Energy loss Monte Carlo. The particle of mass m is started as
position x0, chosen uniformly between 0.05 g/cm2 and L sec θ penetration
into the last plane. The particle is then propagated backward in steps of x0,
x1 or x2 until 6 planes are crossed. At each step an energy-loss fluctuation
is chosen. From a large sample of simulations at a fixed θ, we take the mean
hit ǫi(θ;m) in each plane i, and their covariance matrix Vij(θ;m).
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can be m = mπ or m = mπ for the particles under present consideration).

By integrating the Bethe equation, we can obtain the expected decrease in

kinetic energy, as the particle travels any space interval in the material. This

is sometimes known as continuous slowing-down approximation (C.S.D.A.).

C.S.D.A.’s have been tabulated for a variety of materials, and many of

them can be found in Ref. [37]. For all of the work that follows, I have used

a table of C.S.D.A. for protons in polystyrene. The tracker is approximated

as 100% polystyrene, although this neglects the small amount of fiber, light-

sealing bag and other materials in its makeup. To use the table for pions, I

scale x by a factor of mπ/mp. Positions between table entries are interpolated

linearly. This same function is the function that has been used for calculating

Tπ during pion reconstruction (Fig. 5.9(a)). The near stopping region of the

C.S.D.A. is graphed in Fig. 6.1.

The minerva experiment has used χ2-based comparisons of tracks to the

profiles of stopping particles [19, §10.2]. Prior to minerva, it appears this had

never been done experimentally in scintillator-bar neutrino detectors. (The

SciBar detector analyses, for example, did not attempt it. The choice, rather,

was to score each pion hit as mip-like or not, with no difference between the

beginning, middle or end of the track. This has been described previously in

my discussion of the SciBooNE pion analysis.) The function I construct here,

is essentially a gutted-down version of the one described in Ref. [19].

The signature of a stopping particle is strongest at the end of a track. The

final 6 plane energies will be labeled E1 . . . E6. I define

χ2(E1 . . . E6; θ;m) =
6∑

i=1

(
Ei − Ēi

σi

)2

(6.A)
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where Ē1 . . . Ē6 are the expected energies, σ1 . . . σ6 are the standard widths, θ

is the track angle, and m is the particle mass. The entities on the right-hand

side (Ēi, σi) are functions to be determined depending just on the material

properties, θ, and m. Finally, χ2 will be called χ2
p when m = mp and χ

2
π when

m = mπ. Six planes are sufficient to capture the rise in energy of a stopping

pion in minerva.

In the section following, we will define Ēi and σi so that the distribution

of χ2
π,p on stopped pion (proton) data is described by f(χ2) with D.O.F. = 6.

To be explicit, the function f(χ2) for D.O.F. = 6 its integral are:

f(χ2) =
χ4

16
e−χ2/2

P (χ2) =

∫ ∞

χ2

f(t) dt =

(
1 +

χ2

2
+
χ4

8

)
e−χ2/2

(6.B)

6.3 Dependence of the 6th and 5th Planes

Let us begin by determining the expected energy Ē6 in the last plane. After

this, we will similarly determine Ē5 for the second-to-last plane, and a pattern

will be established to continue down to the first plane (Ē4 . . . Ē1).

The energy E6 deposited in plane 6 should increase with the track angle θ,

and with the penetration depth x0 (see Fig. 6.2). Since each tracker plane has

1.65 g/cm2 active thickness (page 25), as x0 increases, the deposited energy

reaches a maximum when x0 cos θ = 1.65 g/cm2. As x0 increases further, the

pion stops in passive material and E6 no longer increases. The maximum

physical value of x0 cos θ is 2.02 g/cm2, the full thickness of a tracker plane

(active + passive).
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For a reconstructed pion track, the track angle θ is known, but the pen-

etration x0 is unknown. Thus the best value for the expected energy Ē6 in

plane 6 is determined by a Monte Carlo experiment which assumes that x0

has a uniform distribution between 0 and (2.02 g/cm2) sec θ.

For plane 5, we see that E5 increases with increasing θ but decreases with

increasing x0. As the depth of penetration increases, the steepest part of the

energy loss shifts out of the 5th plane and into the 6th, thus E5 decreases. In

this case, unlike in the estimation of E6, we have a clue from the data what the

penetration is. The value of E6 measures the penetration (to the resolution

allowed by photo-statistical fluctuations).

Thus, the expectation Ē5 for plane 5 should contain a term S56E6, where

S56 is a constant. The constant S56 with a negative value expresses the ex-

pected anticorrelation between E5 and E6: as E6 increases, the expectation

Ē5 for E5 decreases. The next section will determine the precise meaning of

this correlation.

6.4 Calculation of Means and Correlations

The 5-6 correlation actually cannot be neglected if our goal is to obtain Eq.

(6.B) for the shape of the distribution of χ2
π,p on stopped pion (proton) signal.

The reason is that Eq. (6.A), as it stands, is only correct when its 6 degrees

of freedom are uncorrelated. The constant S56, introduced above, is meant to

transform from the natural basis to an uncorrelated basis. In this section I

will formalize what that means.

The constant S56, whose intuitive meaning is clear from the argument in
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§6.3, ought to be formally related to the covariance matrix. This is true, and

can be revealed in a few short steps.

The expected energy Ē5 in plane 5 will now take this exact form,

Ē5 = ǫ5 + S56(E6 − Ē6) (6.C)

where the meaning of the constant ǫ5 is to be determined. The purpose of this

form is that it allows a pattern to be continued for the remaining expectations

Ē1 . . . Ē4, as follows:

Ē6 = ǫ6

Ē5 = ǫ5 + S56(E6 − Ē6)

Ē4 = ǫ4 + S45(E5 − Ē5) + S46(E6 − Ē6)

...

Ē1 = ǫ1 +
6∑

j=2

S1j(Ej − Ēj)

(6.C∗)

This is the most general possible extension of the argument in §6.3.

We will now see that the constants Sij relate simply to the covariance

matrix. To use compact notation, I will now define

Sii = 1

Sij = 0 (j < i)
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and produce (after a little rearrangement)

Ei − ǫi =
6∑

j=1

Sij(Ej − Ēj) (6.C∗∗)

so that S is the matrix that converts the vector of E − Ē into the vector of

E − ǫ. If I now define the matrix V by,

V = S diag(σ1
2 . . . σ6

2)ST (6.D)

STV −1S = diag(
1

σ12
. . .

1

σ62
) (6.D∗)

we see that V is manifestly symmetric, is diagonal if and only if the off-

diagonals of S are zero, and its positive-definiteness is equivalent to the posi-

tiveness of σ1
2 . . . σ6

2 (or the realness of σ1 . . . σ6).

We see that V has all the properties of a covariance matrix. To prove that

it is, we will determine its relationship to χ2 (Eq. 6.A). By substituting Eq.

(6.D∗) into Eq. (6.A), and allowing S and ST to act on E − Ē through two

invocations of Eq. (6.C∗∗), we obtain

χ2 =
∑

i,j

{V −1}ij(Ei − ǫi)(Ej − ǫj)

which is the form of χ2 when V is a covariance matrix.

From the derivation above, we finally obtain the interpretation of each

element of Eq. (6.C) for the expected energy:

• ǫi is the mean energy in plane i.

• Sij and σ are the covariance matrix V = S diag(σ)ST .
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• Ēi is the mean energy in plane i after diagonalizing the covariance.

We may now employ this set of quantities to calculate χ2. When six plane

energies E1 . . . E6 and a track angle are given, χ2 is calculated by the following

method:

• Using the constants Sij(θ;m) and ǫi(θ;m), calculate the six expectations

Ēi through Eq. (6.C∗).

• Calculate the six differences Ei − Ēi.

• Using the constants σi(θ;m), calculate χ2 by Eq. (6.A).

The χ2 calculated in this manner is guaranteed to have the shape of Eq.

(6.B), provided Sij and σi faithfully reproduce the covariance.

To produce V (from which S and σ are obtained, see Appendix B) and

ǫ, we need to simulate the detector materials and photo-statistics. I do not

use the full-featured geant4-based Monte Carlo to perform this task, since

it can be done more efficiently by a stand-alone program. Fig. 6.2 shows how

the simulation works. The material is divided into active and passive sections.

The total plane thickness, active plus passive, is L = 2.02 g/cm2. In order to

keep my stand-alone simulation in agreement with the geant4 based detector

simulator, I found that 1.60 g/cm2 should be used for the active thickness,

rather than the nominal 1.65.

A stopped-particle simulator does not need to care about the particle’s

initial momentum. It may begin at the stop point and work backward. The

total energy is initialized to the particle mass m. The stop point x0 is chosen

uniformly. Now, the particle is propagated backward through 11 (12) slices if
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it stops in the last active (passive) slice. Each propagation step performs the

following four actions:

1. Convert the current energy E to a nominal range X0, using the C.S.D.A.

(Figure 6.1). Note, this is equal to the particle’s present spatial position

only when fluctuations are not present.

2. Step to the upstream edge of the current slice. The step distance xstep

will be assigned. This is a distance of xstep = x1 (x2) for passive (active)

slices, except for the first step, which is xstep = x0 − x1 (x0) if the first

slice is passive (active).

3. Choose a new total energy E ′ = E(X0 + xstep) + η, where η represents

fluctuations. The fluctuation η is chosen by a random Gaussian.

The full width w at half-maximum of the energy loss fluctuation is given

in reference [36, §30.2.7] by

w =
2KZxstep
Aβ2

.

The full width at half-maximum of a Gaussian is used, i.e., w/σ =

2(2 log 2)1/2. The particle speed β2 is evaluated at E(X0 + xstep). (The

material constant KZ/A is calculated to be 0.228 MeV cm2/g, using the

atomic fractions in Table 2.1 and a standard table of atomic weights.)

If the current slice is active, then E ′ minus the initial energy is the

unsmeared hit value. If E ′ is less than the initial E, then a different η is

chosen from the same distribution until E ′ > E.
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Figure 6.3: Simulated tracks at θ = 15◦. Four events from the stand-alone
Monte Carlo are shown.
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Figure 6.4: Stopping pion parameters. Displayed here are the results for
m = mπ and 0 < θ < 60◦ from the stand-alone Monte Carlo.
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4. If the current slice is active, then the hit is returned with photo-statistical

smearing. To apply smearing, we simulate the sharing of the charge in

two triangles (see Figure 3.2). The numbers n1 and n2 represent the num-

ber of p.e. in each channel respectively. The parameter ξ = n1/(n1+n2)

is chosen from a uniform distribution to represent the sharing fraction.

Then n1 and n2 are assigned, using the constraint that their sum con-

verted to MeV must be equal to the plane energy. Then to each ni, a

number from a random Gaussian with width
√
ni is added. The sum

n1+n2 is is converted back to MeV. The value 0.15 MeV/p.e. is used for

conversion between p.e. and MeV.

Using the above Monte Carlo, I simulate 30,000 tracks at each fixed angle

θ for 100 angles between 0 and 60◦. From this sample we obtain ǫi = 〈Ei 〉

and Vij = 〈 (Ei − ǫi)(Ej − ǫj) 〉 as functions of θ. From Vij , we obtain Sij and

σi (Appendix B).

From the results in Fig. 6.4, a simple angular dependence is suggested. The

entire result can be expressed in just 29 numbers, using

ǫi(θ;m) = ai(m) + bi(m)(sec θ − 1)

σi(θ;m) = ci(m) + di(m)(sec θ − 1)

Si6(θ;m) = Si6(m)

Sij(θ;m) = 0 (j 6= 6)

Thus the numbers ai(m), bi(m), ci(m), di(m), and Si6(m) are sufficient to

describe the stopping particle of mass m at all angles θ.
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Figure 6.5: Corrections to the signal shape.

6.5 Corrections to the Signal Shape from

Full-Featured Monte Carlo

Now we return to the full Monte Carlo, using events simulated and recon-

structed in the detector. Using the categories defined in §4.3, I select stopped

pions. I take the 6 plane energies from their reconstructed tracks. Finally I

evaluate χ2
π using Eq. (6.A). The result is shown in Fig. 6.5.

The distribution of χ2
π is slightly wider than a true χ2 distribution. The

shape can be expressed by a small perturbation. Recall from Eq. (6.B) that

Degree Expected Fit

Constant 1 1± 0 (fixed)

Linear 1/2 0.51± 0.01

Quadratic 1/8 0.11± 0.02

Cubic 0 0.014± 0.007

4th 0 −0.001± 0.001

5th 0 0.00015± 0.00005

Table 6.1: Adjustment to P (χ2) for the signal.
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the probability integral P is given by

P (χ2) =
(
1 + χ2/2 + χ4/8

)
exp(−χ2/2).

We notice that the functional form is polynomial(x) × exp(−x/2). To vary

the shape, I let the factor of exp(−x/2) become an arbitrary polynomial with

constant term 1. The constant term 1 in the expression for P (χ2) conserves

probability. By fixing only the constant term, normalization is preserved while

the fitter may modify the other terms arbitrarily.

Table 6.1 shows the result of a fit allowing terms up to quintic. The lin-

ear and quadratic terms agree with the true formula. The quartic term is

consistent with zero. However, the fit wants to add small cubic and quintic

terms.

6.6 Signal/Background Separation

Figs. 6.6 and 6.7 show the distributions of χ2
pi and χ

2
p for all events passing the

cuts in Chapter 5. These plots require extra Monte Carlo truth information

to be interpreted properly. The plot colors are as before as long as the found

track is a pion in the Stop category (§4.3). I change the color in the histogram

for other cases: to green if it is a pion, but not in the Stop category; to gold

if it is a proton; and to white hatched if it is anything besides.

The linear scale panel of Fig. 6.6 also shows a data-driven background

prediction with errors. The prediction is obtained in the following manner.

We assume that the signal has the shape described in Table 6.1. The S/B
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Figure 6.6: Distribution of χ2
π, linear and log.

separation comes from a fit to data, in this form:

data(χ2
π) = Af̃(χ2

π) + background(χ2
π) (6.E)

where A is a parameter representing the signal scale, f̃(χ2
π) is the perturbed χ

2

distribution, and background(χ2
π) is an arbitrary function with a finite number

of parameters.

The range of the fit is 0 < χ2
π < 36. Data at larger values of χ2

π is assumed
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Figure 6.7: Distribution of χ2
p, linear and log. The proton rejector cut χ2

p >
36 is shown.

to be all background.

A theorem from real analysis (see Ref. [39]) states that polynomials are

good approximators of arbitrary continuous functions on a finite domain [x1, x2]

(where here, x1 = 0 and x2 = 36). As the degree of the polynomial increases,

the approximation gets better inside the domain, and worse outside. A poly-

nomial of high degree tends toward ∞ very quickly for x < x1 or x > x2,

regardless what the approximated function is doing in those regions. Inside
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Figure 6.8: Uncertainty of the background result. 100 perturbations of fit
(6.E) are shown. The upper family of curves is signal plus background; the
lower family of curves is background alone. The background error band in
Fig. 6.6 is calculated by the spread of the family of background curves in
each bin.

the defined domain, however, its flexibility to mimic the approximated function

improves as its degree increases.

If a polynomial form of the background is chosen then the main question

is what degree. By experimenting with different degree polynomials, I find

that the degree cannot be greater than cubic without some further constraint

being imposed or some fit-guiding action being taken by the user. A quartic

(or higher) polynomial naturally makes a “Bactrian Camel” shape, i.e., with

two humps. The problem with this is that by the design of the S/B separation,

the background is expected not to be able to produce the characteristic peak of

the χ2 distribution at χ2
π = 4. A quartic polynomial could let one of its humps

look like this signal. But by having degree no higher degree than cubic, the

background cannot mimic the signal peak, and the fit is guaranteed to make

sense the first time.
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With the degree of the background polynomial settled at cubic (four free

parameters), the dimension of the fit becomes five. The fifth parameter is

signal scale A in Eq. (6.E).

After the fit is performed, its uncertainty must be evaluated. This is done

by taking the spread of 1000 random perturbations around the best fit result.

100 of these perturbations are shown in Fig. 6.8. Each perturbation has been

produced by the method in Appendix C. Both the signal shape fit (5 parame-

ters, perturbed around the values given in Table 6.1) and fit (6.E) (5 param-

eters) are perturbed—a total of 10 parameters to be randomly changed—for

each curve in Fig. 6.8.

6.7 Closure Test

From Fig. 6.6, it can be seen that the reacted-pions prediction (red points)

follows the green part of the Monte Carlo, similarly as the data points follow

the total Monte Carlo. To test the robustness of the S/B separation result,

I have performed the fit (6.E) using Monte Carlo as data, while biasing the

weight of reacted pion events (Fig. 6.9). The reacted pions prediction follows

along with the green histogram in each case, demonstrating the robustness of

the background prediction.

6.8 Utilization of Sideband

The most important part of S/B separation is being able to perform that sepa-

ration on any histogram—not just on the histogram of χ2
π, as shown previously.

I will make the fundamental assumption that the distribution of χ2
π (Fig.
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Figure 6.9: Closure test for signal/background separation. The reac. predic-
tion is taken from Monte Carlo as data. Change in the reaction cross-section
is simulated by reweighting the “green” events in each panel. The weights
are (left to right, from top): 0, 0.5, 0.8, 1.0, 1.2, 2.0. (Since the plots are
area-normalized, blue area decreases with increasing green.)

98



6.6) is unchanged when restricted to a bin (say, 100 MeV < Tπ < 110 MeV

or 0.1 GeV2 < Q2 < 0.2 GeV2). Let us define the ratio R = Nbackground(χ
2
π <

18)/N(χ2
π > 18). The numerator comes from the fit, and the denominator

comes from data. Then the reacted pion contribution in any bin can be found

by (1 + R) times the sideband in that bin. (The assumption here is that the

sideband at χ2
π > 18 is virtually all background.) Finally, the error on R is

propagated into the total error on the histogram’s background prediction.

Fig. 6.11 shows the result of background prediction using Monte Carlo. It

is seen that the red, predicted background generally follows the green true

background. Finally, Fig. 6.12 shows the background prediction on data.

When background is subtracted, the pion kinetic energy residual becomes

narrow (Figs. 6.11(b), 6.13). On Fig. 6.13, each vertical slice is normalized to

all the others. Fig. 6.10 shows there are vanishingly few pions in the off-center

region at Tπ > 300 MeV.
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Figure 6.10: True pion kinetic energy.
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Figure 6.11: Reaction predictions from Monte Carlo.
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Figure 6.12: Reaction predictions from data.
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Figure 6.13: Pion kinetic energy residual, with subtraction. Compare Figs.
1.7 and 5.10.
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Chapter 7

Sensitivity to the Axial Mass

7.1 Event Reconstruction using the Single-π

Hypothesis

Where we left off, the event energy Ẽν has been measured by the calorimetric

response of every channel in the minerva detector. But we want to do better.

On single pion events, where the muon and pion vectors have been measured,

it is possible to compute Eν from the vectors, rather than from the total

calorimetric energy in the detector, and this turns out yield much smaller

errors on the hadroinc mass W , although a noticable difference has not been

achieved on either Eν or Q2. I will begin with a review of the relativistic

kinematics.

Although most readers are familiar with relativistic 2-body scattering, our

channel ν N → µπN ′ has a 3-body final state, and a massless particle of un-

known energy in the initial state; these features make the algebra less familiar.

Recall also that only two of the three final-state particles will be measured—

the recoiling nucleon N ′ is not measured. This will lead us to a formula for

the unknown energy Eν involving the vectors of only two final particles, in this

case the muon and the pion.

The Eν formula I refer to is stated in some previous references (see, for

example, [17, Equation 2]). However, I was not able to locate a published

derivation of the formula. For this reason, I will begin this chapter with a
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derivation.

The following lemma is useful: for any relativistic particle with mass m,

the kinetic energy T = E −m is given by

E −m =
1

2

{m− (E − pz)}2 + pT
2

E − pz
. (7.A)

The proof is in cross-multipyling and expanding all products, with the result

that the mass-energy relationship for relativistic particles, m2 = E2 − p2, is

recovered. Suppose we only know two quantities x and y, where x = pT =
√
px2 + py2 and y = E− pz. We would like to get the particle’s kinetic energy

T using just x and y. This puzzle is not merely an exercise: we will use it for

real in the next step.

With (7.A) in hand, we will now solve the collision ν N → µπN ′ com-

pletely. Conservation in all four dimensions—energy, px, py, and pz—will be

used. The neutrino direction defines the z-axis. From conservation of energy

and pz we state,

Eν +mN = Eµ + Eπ + EN (7.B)

Eν = pz(µ) + pz(π) + pz(N). (7.C)

Now subtracting (7.C) from (7.B), the neutrino energy cancels and we

obtain this “unitarity” rule,

mN =
∑

µ, π,N

(E − pz) (7.D)
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Figure 7.1:
∑
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involving the three final particles.1 The quantity E−pz has been measured for

two of the final particles, the muon and the pion (Fig. 7.1). For the remaining

particle, the recoil nucleon, Eq. (7.D) tells us what E − pz is.

The key now is to apply the lemma, Eq. (7.A), to the recoiling nucleon

whose E − pz has become known. We also need the nucleon’s transverse

momentum pT , but this is supplied by the two remaining conservations: the

sum of the transverse momentum vectors of the muon and pion must be equal

and opposite to the transverse momentum vector of the recoiling nucleon. Now,

with E − pz and pT known for the nucleon, its kinetic energy is calculated.

The neutrino energy Eν is found as Eν = Eµ + Eπ + TN .

For efficient computation, TN is calculated by considering an off-shell pseu-

doparticle “µπ” whose 4-momentum is equal to muon plus pion. The pseu-

doparticle also helps us compare our result to the quasi-elastic scattering result.

If Eπ → 0 and ~pπ → ~0, the pseudoparticle becomes on-shell with mass mµ and

the solution for quasi-elastic scattering is recovered. (Compare, for example,

Eq. (4.10) of reference [18].)

Finally, the other kinematic variables Q2 and W come from their usual

1Comparing Eq. (7.D) to Equation 2 of reference [17], it appears that [17]’s formula for
Eν is stated as a ratio of two negatives.
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definitions, as below (compare Eq. 5.B):

Eν = Eµ + Eπ

+
1

2

(Eµ − pz(µ) + Eπ − pz(π))
2 + (px(µ) + px(π))

2 + (py(µ) + py(π))
2

mN − (Eµ − pz(µ) + Eπ − pz(π))

Q2 = 2Eν(Eµ − pz(µ))−m2
µ

W =
√

max(0,m2
N + 2mN(Eπ + TN)−Q2)

(7.E)

It should be emphasized that Eq. (7.E) introduces feeddown from higher

resonance and D.I.S. events. The derivation is valid in the 1π case, because the

sum (7.D) contains no more than one particle that is not measured. For the

Nπ case, the derivation breaks down at the step when Lemma (7.A) is applied.

Three things have been supposed at this step: that there was one unmeasured

particle, that the unmeasured particle was on-shell, and that its mass was

mN . None of these hold when both a recoiling nucleon and one (or more

than one) pion are not measured. This means in particular that it is invalid

for Nπ (N > 1) events. If another pion were produced and not detected—

and this is the case for all of the Nπ background that has survived—then W

is highly underestimated, by the mass-energy of the unmeasured pion(s) not

being accounted for. From Monte Carlo it appears that this W feed-down

lands in the middle of the ∆ resonance region in the worst way possible (Fig.

7.8(g)).

We have relied on the calorimetry to cut as much of the Nπ background as

possible. When Eq. (7.E) is applied on safe one-pion events, and the prediction

for reacted pions is subtracted, narrower residuals can be achieved compared to
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Figure 7.2: Recoil of the nucleon, as calculated by the long fraction bar in
(7.E). The cut TN > 40 MeV removes coherent pion production events from
the sample.
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Figure 7.3: Recoil of the nucleon, with bkg. prediction.
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Figure 7.4: Recoil of the nucleon, subtracted.
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Figure 7.5: Results of Eq. 5.B. For W̃ , see also Figure 5.4.
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Figure 7.6: Results of Eq. (7.E).

111



 (GeV)HadCalor E
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

40

80

120

160

200 DATA
 stop→ π1
 stop→ πN

 stop→Coherent 
 reactedπ

Proton
Other

(a)

 Residual FractionHadCalor E
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120
 = -0.18µ
 = 0.24σ

(b)

 (GeV)νCalor E
0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

120
(c)

 Residual FractionνCalor E
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

100

200

300

400
 = -0.02µ
 = 0.07σ

(d)

)2 (GeV2Calor Q
0 0.2 0.4 0.6 0.8 1 1.2 1.40

40

80

120

160

200
(e)

 Residual Fraction2Calor Q
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100
 = -0.00µ
 = 0.20σ

atop wide gaussian

(f)

Calor W (GeV)
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

20
40
60
80

100
120
140
160

(g)

Calor W Residual Fraction
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 10

100

200

300

400

500
 = -0.06µ
 = 0.10σ

(h)

Figure 7.7: Results of Eq. (5.B), subtracted.
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Figure 7.8: Results of Eq. (7.E), subtracted.
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what Eq. (5.B) had told us earlier (Figs. 7.5–7.8). It is regrettable though that

this improvement does not extend to Eν or Q2. Even perfect reconstruction

of the hadroinc system could not help with either Eν or Q2. The muon energy

Eµ is the dominant source of error in Eν , and the muon energy squared Eµ
2

is the dominant source of error in Q2.

7.2 Production of the Q2 Spectrum

Figs. 7.6 and 7.8 show the results of the event reconstruction equations (7.E).

I will use the data and Monte Carlo from Fig. 7.8(e) to extract the axial mass.

The data in Fig. 7.8(e) has few events per bin, with only ≈ 140 events in the

largest bin. Since this implies fairly large statistical fluctuations (> 10 % in

each bin), I will double the bin size for the M∆
A extraction.

Figs. 7.9(a) and (b) show the rebinned versions of Figs. 7.6(e) and 7.8(e),

respectively. Fig. 7.9(b) will be the basis for the axial mass extraction.

Producing the Monte Carlo here is as important as producing the data.

It is important at this point to use all the systematic errors available on the

Monte Carlo. Table 4.1 gives the list of flux, cross-section, and background

scale systematics that have been considered. The total of these errors and the

Monte Carlo statistical error is plotted in Fig. 7.9 as a solid band around the

Monte Carlo.

A word should be said about how the M.C. error is made. For each of

a thousand so-called “universes,” the vector of parameters in Table 4.1 is

perturbed by a vector of random Gaussians. The parameter adjustments are

accomplished by reweighting of events. In each universe, after parameters

114



)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1 1.2 1.40

100

200

300

400

500 DATA

MONTE CARLO

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1 1.2 1.40

50

100

150

200

250

300

DATA

MONTE CARLO

Figure 7.9: Q2 with full errors. The Monte Carlo bands use dotted area
to show the statistical error, and solid area to shown the total (statistical
plus correlated) error. Top: without subtraction, equal to Fig. 7.6(e) with
rebinning. Bottom: with subtraction, equal to Fig. 7.8(e) with rebinning.
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are decided, the universe creates its own histogram of the Monte Carlo part of

Fig. 7.9. At the end, the spread of the thousand M.C. histograms is computed,

and this is the source of the M.C. error band in Fig. 7.9. For data, the same

thousand-universes method is followed, but the only parameter varied is the

background scale.

After all errors are computed, the magnitude of the Monte Carlo error is

rougly equal to the magnitude of the data error. Despite their coincidental

similarity in magnitude, the errors mean different things. The largest con-

tributor to the Monte Carlo error is cross-section uncertainty. From this and

other sources of error, the M.C. error is fully correlated. The data includes a

background scale error, which is correlated, but the statistical (uncorrelated)

error dominates, so the data total error is virtually uncorrelated.

7.3 Production of Confidence Intervals

The axial mass M∆
A itself has not been varied as a systematic error. But since

this parameter can be altered by event reweighting, the same as the parameters

in Table 4.1, it is convenient to use this technique to set arbitrary values of

the axial mass in the Monte Carlo.

The default setting is M∆
A = 1.12 GeV. I vary this in increments of 20%,

from 0.45 GeVto 1.79 GeV. Figures 7.10–7.11 show the Monte Carlo with these

seven points of M∆
A . The data has been overlaid on each panel and does not

vary from panel to panel.

We define the χ2 comparison of data to Monte Carlo. The data-M.C.

difference, δki = Nk
data−Nk

M.C., where the index i = 1 . . . 15 runs over the fifteen
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Figure 7.10: Varied M∆
A (1).
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Figure 7.11: Varied M∆
A (2).
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bins of Q2 and the index k = 1 . . . 1000 runs over the parameter universes, is

turned into a covariance matrix Vij by Vij =
〈
δki δ

k
j

〉
(k)

−
〈
δki

〉
(k)

〈
δkj

〉
(k)
.

The averages are taken over the thousand parameter universes. Then χ2 is

computed as χ2 =
∑

i,j {V −1}ij δ0i δ0j (where δ with superscript 0 represents no

perturbation of parameters).

In Figs. 7.10–7.11, the contribution to χ2 from each bin is shown in the

small histogram below each panel. The deviations are evenly distributed across

the range of Q2, despite the widely varying magnitude (of both counts and

error) over that range, although the bin centered at Q2 = 0.45 GeV2 seems to

be a severe outlier. The summary of χ2 versus M∆
A is plotted in Fig. 7.12.

If the model is good, then we recall from formal statistics that the most

probable value for χ2
min is D.O.F. − 2. The number of D.O.F. in our case is

15, since the 15 bins from Q2 = 0 to Q2 = 1.5 GeV2 are completely indepen-

dent. (Area normalization is enforced, but this only constrains the value of

the overflow bin with respect to the 15 indepedent bins.) Thus, we expect

χ2
min = 13.

To extract χ2
min, I interpolate the seven points with a quartic polynomial.

From the minimum of the interpolation function, we find M∆
A = 1.15 GeV

(best value) with χ2
min = 13.1. To produce the 68% (90%, 95%) confidence

band, I find the intersections of the interpolation function with y = χ2
min+∆χ2

where ∆χ2 = 1.00 (2.70, 4.00). The results are summarized in Table 7.1.

The lowest bins of Q2 are the most informative. To demonstrate this (Fig.

7.13), I plot χ2 vs. M∆
A for different ranges of Q2. The top, blue curve is with

no changes and is equal to Fig. 7.12. For the red curve, the tail end of the Q2

spectrum has been masked (Q2 < 1.0 GeV2). In this scenario, χ2
min changes
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Figure 7.12: Confidence intervals of M∆
A , from 7 trial points. The points are

interpolated by a quartic polynomial.

∆χ2 C.L. (approx.) Interval (GeV)

1.00 68% 0.96–1.36

2.70 90% 0.83–1.51

4.00 95% 0.76–1.60

Table 7.1: Confidence intervals of M∆
A .
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A for alternate ranges of Q2.

121



because there are now five fewer degrees of freedom (D.O.F.). However, the

shape of the curve, and the confidence intervals, change very little.

On the other hand, if I remove only the first bin (yellow curve, Q2 >

0.1 GeV2), the result changes dramatically and χ2
min sinks to just above 10.

The reduction of χ2
min is greater than 2, but D.O.F. is only one fewer. This

anomoly suggests that the data does not make sense without the first bin.

In the scenario with the first bin masked, the unusual best value of M∆
A ≈

0.8 GeV might be explained by the vector massMV = 0.84 GeV. It is suggested

by Figure 1.1 that the (CA
5 )

2 term is the dominant term in the cross-section

at Q2 < 0.1 GeV2, but this term decreases dramatically as Q2 increases, and

it is overtaken by the cross-term CV
3 C

A
5 . The cross-term is similar in shape

to the pure vector term (CV
3 )

2. It seems impossible to distinguish vector from

axial-vector unless the limit as Q2 → 0 is probed.
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Chapter 8 Future Prospects

This chapter contains notes on possible continuations of the analysis.

• Statistics. Since the minerva experiment will continue running in dif-

ferent beam configurations, the statistical part of the M∆
A uncertainty

can be reduced, even if no other changes to this analysis are made. Fur-

ther running will take the measurement into a systematics-limited mode,

since the statistical error is comparable to the systematic at the present

time.

• Introduction of alternate models. The Rein-Sehgal model [7] has been

used because of a technical limitation in the available version of the

genie [31] event generator. The measurement itself does not make ref-

erence to Rein-Sehgal. Other models can be applied by implementing

them in the generator.

• Negative pion (π−) mode. I relied on the Michel electron tag during de-

velopment in order to obtain a relatively clean input stream for stopping

particle I.D. Depending on the robustness of the I.D. and subtraction

algorithms, it is conceptually possible to remove the requirement of the

Michel electron tag, and identify pions (over a large proton background)

by energy loss alone. If this were successful then first, the efficiency

would increase by about 20% (this is referring to the 81% efficiency of

the Michel electron finding algorithm by itself).

More interestingly, however, it would allow a parallel analysis of minerva
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antineutrino data, in the channel ν̄ N → µ+ π−N ′. This data comes

from periods of running in which the horn and minos N.D. magnetic

fields had been set up in the other direction than usual, for π− neutrino

parent and µ+ product focusing, respectively. The π− has the same

energy loss profile as the π+, so the stopping particle I.D. would require

no modification. However, the stopped π− is typically destroyed by

nuclear capture, leaving no signal. This final behavior makes it unlike

the stopped π+, which decays at rest and leaves the delayed e− signal

that is required by the analysis in its present form.

• Subtraction of 2π background. The cut on hadronic mass W̃ cannot

produce a 1π sample with more than about 70% purity, because the

hadronic mass calorimetrically is subject to a 20% uncertainty (Fig. 5.4).

On the other hand it is conceptually possible to subtract this background.

B. Eberly [35] has done this subtraction in a similar analysis. This

analysis could be improved by copying the method developed there.

• Recovery of a fraction of resonant events at small TN . A moderate

increase in efficiency could be achieved by making the coherent rejection

cut more sophisticated. Within the sample at TN < 40 MeV, the Monte

Carlo prediction is that about half the events are resonant, and half

coherent. (Of course, this prediction relies on the Monte Carlo cross-

section for coherent production, which may not be correct). Very few

coherent events fail the TN cut.

To rescue some of the lost resonant events at low TN , it is conceivable to

use the inverse of a coherent signal cut, borrowed directly from a coherent
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analysis. The nuclear transfer t = |q − pπ| (where q is the leptonic four-

momentum transfer) is traditionally used in coherent signal analyses.

For completion of the resonant analysis, it needs to be studied how t

can be used with TN to carve out a more powerful inverse selection of

coherent events.

• Proton track analysis. 15% of the selected events have three recon-

structed tracks. If the third track is presumed to be a proton, then

it should correspond in direction and energy to the prediction of the

recoiling nucleon from two-particle (µπ) reconstruction. Verifying this

correspondence would seem to be the first step to making use of the

3-track sample. Additionally, if the track had a stopping proton I.D.

and the sample can be made large enough, 3-track analysis could be

performed on the 3-track sample.

• Alternate background removal. The analysis as presented here used a

sideband scaled by a ratio 1 + R to predict the background. A single

R was used for the entire sample, although this assumption could stand

to be nuanced. At small reconstructed energy (Tπ < 100 MeV) the pre-

dicted background deviates from Monte Carlo (Fig. 6.11(a)), suggesting

the background shape is different in this region.

The sideband is also not the only way to measure background. In the

limit of large numbers of events, the same result should be achieved by

assigning each data event a weight of w = Nsignal(χ
2
π)/N(χ2

π) (where

Nsignal and N come from the fit of signal shape plus background func-

tion to the measured distribution of χ2
π). This cross-check should be
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performed to give confidence to the signal-background separation.

• Use of kinked pion tracks. Only few pion tracks had more than one

trackable segment (Fig. 5.5). Supposing that tracking efficiency for sec-

ondaries could be improved, it might become worthwhile to reconstruct

kinked pions. This would entail making the energy reconstruction more

sophisticated. Instead of relying on range alone, energy of scattering

would be added back in at the scatter point(s).

• Collection of reinteracted pion energy. Most of the events currently sub-

tracted as reacted pion background are inelastic scatters. If the energy of

the pion post-scatter could be collected calorimetrically and added back

in, this would produce a new (large) sample of events with a well-known

pion energy. Direct comparison of the stopping sample to this sample

would become possible. This would also boost statistics for the axial

mass measurement.
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Appendix A

Monte Carlo Truth Persistence

In the course of development, the list of pion reinteractions from the detector

simulation was needed. It was found that this information was not typically

persisted, and no data structure for it existed already.

The following solution is worked out using geant4 [27] as the detsim

software. In our scheme, the creation points and ending points of hadrons are

saved at all generations down to a 5 MeV threshold of kinetic energy. This

already takes care of all the inelastic pion scatters because geant4 actually

destroys the inelastically scattering pion, and creates the scattered pion as a

numerically distinct particle. However, this solution does not work for elastic

pion scatters.

In the elastic case it becomes necessary to look at deeper information.

Every particle in geant4 proceeds in steps. A typical step advances a particle

a fraction of an interaction length. We found that a process name is associated

with each particle step. The process name is a string that is available at each

stepping action, to tell which physical process is occurring at that step.

At a step where the process name is the string Transport, this is a straight

step or a small angle scatter and can be ignored. Other process names that

sometimes occur have names like PionPlusInelastic (there is an “Inelastic” mod-

ule for each hadron type). However, since inelastic processes occur only at

destruction points for the reason explained above, they have already been
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taken care of. The only process to be concerned about, it turns out, is the

one with the name string hElastic. This process does elastic scattering for

hadrons. We determined that hElastic points should be saved. The saving of

hElastic points can be done for all hadrons at all energies, with the exception

of neutrons below 5 MeV.

To present the data in a structure, each persisted particle will have a poly-

line associated with it, with a variable number of points. The minimum content

of the polyline is the creation point and the ending point. If the number of

points is greater than two, the intermediate points are the points where a

hElastic process has occurred. The data stored for each point are position,

time, momentum, and energy.

After running a simulation, it is confirmed that the the direct mother-

daughter relationship organizes the hadrons into a tree, where the nodes of the

tree are points from the set of polylines in the event. Further, it is confirmed

that 3-momentum is conserved at each node, including hElastic points. An

exception to 3-momentum conservation can occur when a product particle is

below 5 MeV kinetic energy and is not persisted.
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Appendix B

Inversion of Eq. (6.D)

Monte Carlo simulation has supplied us with a covariance matrix V . We

will solve the matrix equation V = S diag(σ1
2 . . . σ6

2)ST (Eq. 6.D) for six

uncorrelated standard errors σi and the unit-diagnoal, upper triangular matrix

S representing correlations.

This variant of a Cholesky decomposition solves the equation. An algo-

rithm acting in-place on a 6-by-6 squary array is initialized with the elements

of V . The elements are successively altered to become σi
2 on the diagonal and

Sij above or below the diagonal, as follows:




V11 V12 V13 · · · V16

V22 V23

. . .
...

V66




−→




σ1
2 S12 S13 · · · S16

σ2
2 S23

. . .
...

σ6
2




The diagonal elements Sii are not stored since they are assumed to be 1.

The algorithm which performs this transformation is O(n3). In my imple-

mentation, pesudocoded below, I let the rows and columns be stored in 6-to-1

order, so that (e.g.) the (0, 0) element of the square array is V66.

f o r ( i n t i = 0 ; i < 6 ; ++i ) {

f o r ( i n t j = 0 ; j < i ; ++j ) {
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f o r ( i n t k = 0 ; k < j ; ++k) {

M( i , j ) −= M( i , k )∗M( j , k )∗M(k , k ) ;

}

M( i , j ) /= M( j , j ) ;

M( i , i ) −= M( i , j )∗M( i , j )∗M( j , j ) ;

}

}

This implementation acts only on the upper triangle. Since V is symmetric

and S is upper-triangular, the lower-triangular elements do not ever need to

be accessed.

These properties of the algorithm are easy to verify. If V is diagnoal, the

algorithm leaves the array invariant and Vii = σi
2. Otherwise the algorithm

decreases each diagonal element of the array. (The quantity subtracted from

the diagonal element is strictly positive.) Physically, this means that the

resolution σi gets better, not worse, by accounting for correlations.
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Appendix C

Perturbation of a Fit Result

In §6.6, I suggest that a fit result should be perturbed around its minimum.

This is done using the covariance matrix returned by the fit.

In the diagonal case, the covariance matrix element is Vii = σi
2. To produce

a perturbation, one simply chooses vector of a independent random Gaussians

with standard deviations σi, and adds this random vector to the vector of best

fit parameters.

We may extend this to take account of correlations. If ~x is a vector of

random independent Gaussians with standard deviation of 1, and M is any

matrix, then the covariance matrix of the quantities M~x is MTM . Thus, we

have to solve MTM = V for the matrix M given the fit result covariance

matrix V .

This is accomplished by the Cholesky decomposition. This algorithm is

similar in structure to the one presented in Appendix B. It operates on the

lower triangle of a square array and successively changes the elements of V

into the elements of M . The upper-triangluar elements of M are assumed to

be zero. It can be seen that in diagonal case, it simply takes the square root

of each diagonal and returns the standard deviations σi =
√
Vii.

f o r ( i n t i = 0 ; i < N; ++i ) {

f o r ( i n t j = 0 ; j < i ; ++j ) {

f o r ( i n t k = 0 ; k < j ; ++k) {
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M( i , j ) −= M( i , k )∗M( j , k ) ;

}

M( i , j ) /= M( j , j ) ;

M( i , i ) −= M( i , j )∗M( i , j ) ;

}

M( i , i ) = sq r t (M( i , i ) ) ;

}

After M has been found, a vector of random Gaussians is chosen and

multiplied byM . The result is added to the vector of best parameter values. To

produce another perturbation, a different initial vector of independent random

Gaussians is chosen, but the decomposition does not have to be repeated.
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